
Mathematisches Institut, AG Algebra
Prof. Dr. Max Horn

Rechenkurs „Algebra mit GAP“

Worksheet 7
Version 2015-09-14

7 Polynomials und Test Driven Development

7.1 Polynomials

The following session log shows how to create a polynomial ring in GAP, as well as some polynomials.

gap> R := PolynomialRing(Rationals, "t");
Rationals[t]
gap> IsRing(R);
true
gap> t := R.1;
t
gap> f := 3*t^4 + 5*t^3+t+1; g := 2*t^2+5;
3*t^4+5*t^3+t+1
2*t^2+5
gap> f * g;
6*t^6+10*t^5+15*t^4+27*t^3+2*t^2+5*t+5
gap> QuotientRemainder(f, g);
[3/2*t^2+5/2*t-15/4, -23/2*t+79/4]
gap> f / g; # GAP also knows aboutwith rational functions...
(3*t^4+5*t^3+t+1)/(2*t^2+5)

You can also create polynomials directly:

gap> x := Indeterminate(Rationals, "x");
x
gap> f := x^4 + 3 * x - 1;
x^4+3*x-1

The above are all examples of a polynomial ring in one “variable” or indeterminate, also called univariate
polynomial rings. You can also create polynomials in multiple indeterminates, which are called multivariate
polynomials.

gap> x := Indeterminate(Rationals, "x");;
gap> y := Indeterminate(Rationals, "y");;
gap> x = y;
false
gap> IsUnivariatePolynomial(x^2 + 1);
true
gap> IsUnivariatePolynomial((x+y)^2);
false
gap> x = IndeterminateOfLaurentPolynomial(x^2 + 1);
true

1

Mathematisches Institut, AG Algebra
Prof. Dr. Max Horn

Rechenkurs „Algebra mit GAP“

To compute the degree of a univariate polynomial, you can use Degree. For multivariate polynomials, you
need to tell GAP with regards to which indeterminate you want to know the degree.

gap> Degree(x^2);
2
gap> f := x^3 + x*y + y^2;; DegreeIndeterminate(f, x); DegreeIndeterminate(f, y);
3
2

When working with polynomials, it is often useful to access their coefficients.

gap> f := 12 * x^3 - 2*x + 7;;
gap> LeadingCoefficient(f);
12
gap> coeffs := CoefficientsOfUnivariatePolynomial(f);
[7, -2, 0, 12]
gap> # The reverse is, unfortunately, rather tedious
gap> ind := IndeterminateNumberOfUnivariateRationalFunction(f);;
gap> fam := CoefficientsFamily(FamilyObj(f));;
gap> g := UnivariatePolynomialByCoefficients(fam, coeffs, ind);
gap> f = g;
true

Polynomial rings with coefficients in a field are vector spaces, so methods for vector spaces apply to them.

gap> R := PolynomialRing(GF(5), ["u", "v"]);;
gap> IsVectorSpace(R);
true
gap> CoefficientsRing(R);
GF(5)
gap> R.1; R.2;
u
v
gap> Dimension(R);
infinity
gap> U := Subspace(R, [R.1^0, R.1, R.1^2]);
<vector space over GF(3), with 3 generators>
gap> Dimension(U);
3
gap> Basis(U);
Basis(<vector space of dimension 3 over GF(5)>, [Z(5)^0, u, u^2])

You can also evaluate polynomials, and much more – consult the GAP manual for further information.

gap> Value(x^3 - 1, 2);
7
gap> Value(x^2 + y^2, [x], [3]);
y^2+9
gap> Value(x^2 + y^2, [x,y], [3,4]);
25

2

Mathematisches Institut, AG Algebra
Prof. Dr. Max Horn

Rechenkurs „Algebra mit GAP“

7.2 Tests

When writing programs, it is usually necessary to verify that it adheres to a given specification (this does
not just apply to the homework in this course, but also when you program as part of a job). Ensuring that
is a tricky process.

Moreover, whenever one makes a change to an existing program, there is a risk of breaking something that
previously worked. Most of you have experienced this already.

Here are some hints on how to systematically ensure that your program works correctly.

First, of course you need to read the program specification very carefully. For example, if an input variable
n is specified as being an integer, then it can be more than just a positive number – it could also be zero or
negative.

Secondly, try to write so-called tests for your program, which check that it actually complies to the specifica-
tion. That is, instead of manually running your program with different inputs, you automate this, by writing
a second program which tests the first. The idea being that this second program will be quite a bit simpler,
will change less often, and does something that computers are perfect for and humans are very bad at: It
performs some boring tests again and again, unfailingly and always complete.

For example, recall the function binarySearch(l,x). A simple set of tests for it could look like this:

1 l := [1,17,33];
2 for i in [1..Length(l)] do
3 pos := binarySearch(l, l[i]);
4 if pos <> i then Error("wrong"); fi;
5 od;

Now, whenever you change your program, you can easily re-run these tests. And if you broke something, you
have at least a chance of detecting this.

So suppose you submitted your program, but got a reply that told you something in your program does not
yet work. You are told that it fails for the empty list. The first thing you do is to add a new test case to your
test program which tests this. For example:

1 pos := binarySearch([], 1);
2 if pos <> fail then Error("wrong"); fi;

Then, you modify your binary search program and re-run the test program until all tests pass. While doing
this, you noticed that lists with just also one element also sometimes triggered a problem. You add a few test
cases for this, too, then change your program again until all tests pass.

1 pos := binarySearch([1], 1);
2 if pos <> 1 then Error("wrong"); fi;
3 pos := binarySearch([1], 2);
4 if pos <> fail then Error("wrong"); fi;

This process of first adding a test for a potentially or actually problematic case, then modifying your program
until it passes all tests, is known as test driven development, or TDD. It can be a bit tedious at first, but on
the long run and for somewhat complicated programs, it pays of greatly. I recommend experimenting with
this a bit.

3

Mathematisches Institut, AG Algebra
Prof. Dr. Max Horn

Rechenkurs „Algebra mit GAP“

Back to our tests. The last two (for empty lists and lists of length 1) are examples of edge cases, i.e. cases where
some parameters take on some extremal values which are unusual, and hence often forgotten by implementors.
It is usually a good idea to try to discover such edge cases right from the start, and adding tests cases for
them. However, do not immediately start adding code for them. E.g. in the binary search example, a proper
implementation actually covers all edge cases automatically. Trying to handle them all explicitly just makes
your program longer, and thus increases the chance of it being buggy.

Back to our test program (also called a test suite). After adding a bunch of tests, the fact that all errors lead
to the same error message becomes annoying, as you have to do extra work to figure out which tests failed.
We could change our test cases to look like this:

1 pos := binarySearch([1], 1);
2 if pos <> 1 then Error("wrong result ",pos," for input l=[1] and x=1"); fi;

But this means a lot of extra typing work, and also introduces the risk of the test performed differing from
the error message... I.e. we risk a bug in our test code. But this is all about avoiding bugs. In this case, this
turns out to be easy: Just automate the message generation, too:

1 testBinarySearch := function(l, x)
2 local pos;
3 pos := binarySearch(l, x);
4 if pos = fail then
5 if x in l then
6 Error("Input l=",l,"; x=",x," got fail, but x in l");
7 fi;
8 elif IsInt(pos) then
9 if l[pos] <> x then

10 Error("Input l=",l,"; x=",x," got wrong answer ", pos);
11 fi;
12 else
13 Error("Input l=",l,"; x=",x," got invalid answer ", pos);
14 fi;
15 end;
16

17 l := [1,17,33];
18 testBinarySearch(l, 1);
19 testBinarySearch(l, 17);
20 testBinarySearch(l, 33);
21 testBinarySearch(l, 10); # check negative case where fail is returned
22 testBinarySearch(l, -1); # check negative case where element is before first entry
23 testBinarySearch(l, 50); # check negative case where element is after last entry
24 testBinarySearch([], 1); # empty list
25 testBinarySearch([1], 1); # list of length 1, match
26 testBinarySearch([1], 2); # list of length 1, no match
27 for i in [0..4] do
28 testBinarySearch([1,2,2,3], i); # test with repetition in list
29 testBinarySearch([1,2,2,2,2,2,2,2,2,2,2,3], i);
30 od;

This test suite is now quite easy to understand, and also easy to extend.

4

Mathematisches Institut, AG Algebra
Prof. Dr. Max Horn

Rechenkurs „Algebra mit GAP“

One last suggestion: All your tests, no matter how you do them, are useless if you by accident test the wrong
code. For example, if you use copy & paste to transfer code from an editor into GAP, then sometimes this
gets messed up, and as a result some characters are not transferred. The program then will work differently
than expected; and it can even happen that GAP refuses to accept the garbled pasted code. If you don’t
notice this, it will keep using the previous version of the program, and you will wonder why your change
seemingly did not have any effect.

To avoid this, always use Read to load your code, and double check that you are reading from the right
path. Also, on occasion, exit your GAP sessions and start a new one. Then read your program in – this
ensures that no “old” version of your code is used by accident, may help uncover syntax errors or missing
local statements or the accidental use of global variables, all of which you may not have noticed before, after
repeatedly reading and testing variants of your program.

7.3 Homework

(s7-h1) Let f :=
∑n

i=0 ait
i ∈ Z[t] be a polynomial. Then cont(f) := gcd(a0, a1, . . . , an) is the content of f ,

and f is primitive if cont(f) = 1.

Implement a function cont(f) which takes a univariate polynomial with integers coefficients, and
returns its content. Return fail if f does not satisfy the input requirements.

Hint: You can use IsInt to test whether an object is an integer.

(s7-h2) Let f :=
∑n

i=0 ait
i ∈ Z[t] be a polynomial. Then f is irreducible over Q if it is not constant and

cannot be written as the product of two non-constant polynomials in Q[t]. Eisenstein’s criterion says:
If the degree of f is n ∈ N, and there is a prime p such that (i) p divides ai for 0 ≤ i < n, (ii) p does
not divide an, and (iii) p2 does not divide a0, then f is irreducible over Q.

Implement a function Eisenstein(f) which takes a polynomial f ∈ Z[t] and returns true if f is
irreducible over Q according to Eisenstein’s criterion for any prime p, and false otherwise. (Note
that f may still be irreducible.) Return fail if f does not satisfy the input requirements.

(s7-h3) Let K be a field. Implement a function polyDivRem(f,g) which takes two univariate polynomials f
and g with coefficients in K, with g 6= 0, and which returns a pair [q, r] of univariate polynomials
such that f = qg + r and deg(r) < deg(g). Return fail if f, g are not univariate polynomials or if g
if zero.

Do not use the GAP functions for polynomial division (such as QuotientRemainder). You may use
those for adding and multiplying polynomials, and also IndeterminateOfLaurentPolynomial.

(s7-h4∗) Let R be a commutative ring and f :=
∑n

i=0 ait
i ∈ R[t] a polynomial. The derivative of f is

f ′ :=
∑n

i=1 iait
i−1.

Implement a function der(f) which takes a univariate polynomial and returns its derivative. Return
fail if f does not satisfy the input requirements.

Do not use the GAP function Derivative. You may use IndeterminateOfLaurentPolynomial.

(s7-h5∗) Write a test program for polyDivRem. That is, first implement a function testPolyDivRem(f,g)
which invokes polyDivRem and then verifies that its output is correct. Try to do this without using
QuotientRemainder etc.

Then, write a set of test cases that covers typical cases, but also edge cases. What edge cases can
you think of?

Hint: Consider following the test driven development approach described above, and solving this
exercise concurrently with implementing polyDivRem.

5

	Polynomials und Test Driven Development
	Polynomials
	Tests
	Homework

