JUSTUS-LIEBIG- Mathematisches Institut, AG Algebra

ﬁ UNIVERSITAT . PrXTg Egr. MTGHAOFT
GIESSEN ecnenkurs ,, ebra mi

Worksheet 6

Version 2015-09-14

6 More on groups

6.1 Action and orbits

Let G be a group and X a non-empty set. A right action of G on X is a map
w: XxG—X,(x,9)—zyg
such that for all x € X and g,h € G we have
w(z,lg) =zlg == and w(w(z,g),h) = (z.g9).h = x.(gh) = w(z,gh) .

For example, if X = {1,...,n} and G < X, then G acts on X from the right via z.¢g := 29 (i.e. apply the
permutation g to x).

For a € X, the orbit of a under G is
a.G:={ag|geG}.

6.2 Computing orbits: naive approach

Computing orbits is one of the central building blocks of computational group theory. A naive way to compute
an orbit is to directly use the definition:

"G" is a group, "a" is some object, and "act" is a
function which realizes the desired action of the group G.
orbitNaive := function(G, a, act)
local orb, g, b;
orb := [1;
for g in G do
b := act(a, g);
Add(orb, b);
od;
At this point orb is just a list, and may contain duplicates.
An orbit is a set, so let's turn it into one.
return Set(orb);
end;

We can now do this:

gap> orbitNaive(SymmetricGroup(5), 1, function(a,g) return a’g; end);
L1, 2,3, 45]

We could have implemented the orbit computation without the act function, and simply written a*g directly;
but by having act, we gain flexibility and can work with arbitrary actions. But since that particular action
is quite common, GAP has a shortcut for it: OnPoints. Many other typical actions are also provided, e.g.
OnRight, OnLeftInverse, OnSets, OnTuples and more. As usual, consult the GAP manual for details.

11

12

13

JUSTUS-L' EBlG- Mathematisches Institut, AG Algebra

UN|VERS|TAT — Pr;ll‘. l?)r. MiXGTFT
GIESSEN echenkurs ,, Algebra mi

Exercise 6.2.1

For 2 < n <10, let G := ¥, and compute 1.G using orbitNaive. How long does this take in each case?
Also experiment with other groups.

Of course GAP also has its own command for computing orbits.

gap> Orbit(SymmetricGroup(5), 1, OnPoints);

L1, 2, 3,4 51

gap> Orbit(SymmetricGroup(5), 1); # if you omit 'act', GAP uses OnPoints
L1, 2,3, 4, 5]

Repeat the previous exercise, but this time using the Orbit command. Compare the timings.

6.3 Faster orbit computation

The problem with the naive approach to computing orbits is that it requires iterating over all elements of
the group. This causes at least two problems:

1. The amount of work performed by orbitNaive is proportional to the size of the group, not the size
of the orbit. Yet the orbit can be small while the group is huge. For example, for G := X, acting on
X = {1,...,n}, there is a single orbit of size n, but the group contains n! elements. This is rather
inefficient in general.

2. How do we get all elements of the group in the first place?

To improve things, we proceed as follows: Suppose G := (g1,...,9n) is a finite group generated by the
elements g¢1,...,¢n. Then every element of G can be written as a product g;, - --g;, for suitable elements
i1,...,ik € {1,...,n}. If we now consider the orbit of some point a € X, we have:

bcaG < JgeG:b=ag < Fir,...,ix€{l,....;n}:b=agi, - gi,) = (a-9i,) - - - Gir_,)-Gix. -

This observation leads to the following algorithm:

orbit := function(G, a, act)
local gens, orb, x, g, b;
gens := GeneratorsOfGroup(G);
orb :=[a 1;
for x in orb do
for g in gens do
b := act(x, g);
if not b in orb then
Add(orb, b);
fi;
od;
od;
return orb;
end;

JUSTUS-L' EBlG- Mathematisches Institut, AG Algebra

UN|VERS|TAT — Pr;ll‘. l?)r. MiXGTFT
GIESSEN echenkurs ,, Algebra mi

Try to understand why this function really computes the orbit a.G.
Also, repeat the timing experiment from the previous two exercises.

For orbitNaive, we also had the problem that it was not clear how to obtain all the group elements in the
first place. We actually can now apply the orbit function to find the group elements.

Let G := (g1,...,9n) be a group. G acts on itself by right multiplication, i.e. via w(z,g) := xg. Thus
1¢.G = G. Use this and the orbit algorithm to write a function elements(G) which returns a list of all
elements in G.

6.4 Even faster orbit computation

Our revise algorithm works fairly well for short orbits. But what about large orbits? To study this, we first
need a way to construct actions with large orbit.

Let n,k € N with n > k, let G < ¥, and X := {1,...,n}. Let X[* := {4 C X | |A] = k} be the set of
subsets of X of size k. Then G acts on X[via

w: XM x G — XM (fay,... an},9) = {af,...,al} .

In GAP, this action is implemented by OnSets.

Let n,k € N with n >k, let G:=X%, and let A, :={1,...,k}.
1. Determine a formula for the size of the orbit A;.G. Prove that your formula is correct.
2. For n € {8,12,16,18} and k := n/2, use orbit and Orbit to compute the orbits A;.G. Measure how
long this takes in each case.

If everything is as it should be, you will have determined in the previous exercise that orbit is much, much
slower than Orbit for large n.

Where could the problem be? Looking at the code of orbit, we see that the brunt of the work consists of
just three computations, repeated again and again by the two loops. Specifically, the number of repetitions
equals the size of the orbit times the number of generators of the group, and the operations we repeat are:

1. compute b := a.g;
2. check if b is already in the (partially) computed orbit;
3. if not, add b to the partial orbit.

Any implementation, no matter how clever, will have to do the first step. It turns out that adding a new
element to list is very fast in GAP, and so the bottleneck must be in the innocent looking test b in orb.

Indeed, how can one test whether an element is in a list? Unless one is given extra information about the
structure of the list, there is only one way: Go through all elements of the list, and compare them, one by
one, to our new element. If the list has already size m, then on average we will need to look at m/2 elements
before finding a match.

With some more carefully analysis, one can show that the total number of element comparisons one ends
up doing when using orbit is in the order of m2k, where m is the size of the orbit, and & the number of
generators. So the time taken for our computation should be roughly proportional to m?.

JUSTUS-L' EBlG- Mathematisches Institut, AG Algebra

UN|VERS|TAT — Pr;ll‘. l?)r. MiXGTFT
GIESSEN echenkurs ,, Algebra mi

Look at the formula and the timings you computed in the previous exercise. For each value n, compute the
quotient of the time by the orbit size.

To overcome this, we need to use a better way to arrange our data, i.e., a better data structures. One which
makes it more efficient to test whether some element b is already contained in the partial orbit. Adding
new elements to this data structure should also be fast. In GAP, so-called dictionaries provide such a data
structure. The following function uses a dictionary to replace the problematic b in orb test. (For more
information on dictionaries in GAP, please consult the GAP manual.)

orbitFast := function(G, a, act)
local gens, orb, orbDict, x, g, b;
gens := GeneratorsOfGroup(G);
orb :=[a 1;
orbDict := NewDictionary(a, false);
AddDictionary(orbDict, a);
for x in orb do
for g in gens do
b := act(x, g);
if not KnowsDictionary(orbDict, b) then
Add(orb, b);
AddDictionary(orbDict, b);
il g
od;
od;
return orb;
end;

Exercise 6.4.3

Repeat the previous exercise with orbitFast. How does it compare to orbit and Orbit?

Note that we now keep the partial orbit twice: once in the list orb, once in the dictionary orbDict. This
causes us to waste some memory (but we normally won’t need to worry about that). We need to retain the
list orb, though, because it is important for us to be able to iterate over the elements partial orbit in precisely
the order we added them; this is something lists are perfect for, but dictionaries cannot do at all: in order to
be so fast at element “lookup”, they have to sacrifice sequentiality of the stored data.

As a rule of thumb, there is no “perfect” data structure. Sometimes lists are best, sometimes dictionaries,
sometimes some other — sometimes you need to combine multiple, as was the case here.

6.5 A bunch of useful functions for groups

In the following we present a random list of GAP functions useful when working with groups. There are
many more. Unfortunately, in this course, we do not really have enough time to talk how all of these are
implemented, but at least you can use them as a black-box for now.

GAP “knows” how to compute Sylow subgroups as follows:

JUSTUS-L' EB'G- Mathematisches Institut, AG Algebra

ﬁ UNIVERSITAT . F’r/:nl‘.g l?)r. MTGHAOFT
GIESSEN ecnenkurs ,, ebra mi

gap> G := SymmetricGroup(8);;
gap> P := SylowSubgroup(G,2);
Group(L (1,2), (3,4), (1,3)(2,4), (5,6), (7,8), (5,7)(6,8), (1,5)(2,6)(3,7)(4,8) 1)

gap> Size(P); # size of P is a power of 2

128

gap> Size(G) / Size(P); # ... and |G|/|P| is not divisible by p
315

If you want to know how many Sylow subgroups there are, you can exploit that by Sylow’s theorem, they
are all conjugate together. So, we just need to ask GAP for the size of the conjugacy class.

gap> ccP := ConjugacyClassSubgroups(G, P);

Group([(1,2), (3,4), (1,3)(2,4), (5,6), (7,8), (5,7)(6,8), (1,5)(2,6)(3,7)(4,8) 1)*G
gap> Size(ccP);

315

gap> Q := SylowSubgroup(G,3);

Group([(1,2,3), (4,5,6) 1)

gap> Size(ConjugacyClassSubgroups(G, Q));

280

gap> Size(G) / Size(Q);

4480

You can compute normalizers, centralizers, and more.

gap> NQ := Normalizer(G, Q);

Group([(1,5,3,4,2,6), (2,3), (5,6), (4,6,5), (1,3,2), (7,8) 1

gap> Size(G) = Size(NQ) * Size(ConjugacyClassSubgroups(G, Q)); # verify orbit lemma
true

gap> Size(NQ); Size(Q);

144

9

gap> Size(Centralizer(G,Q));

18

We talked about orbits before; of course GAP can also compute stabilizers.

gap> Stabilizer(G, 8, OnPoints);

Group(L (1,7), (2,7), 3,7), (4,7, (5,7), (6,7) D)
gap> last = SymmetricGroup(7);

true

gap> H := Stabilizer(G, [5,6,7,8], OnSets);

Group(L (7,8), (6,8), (5,8), (2,3), (2,4), (1,2,4) 1)
gap> Size(H);

576

We can also try to find out more about a group, e.g. via the StructureDescription command.

JUSTUS-L' EBlG- Mathematisches Institut, AG Algebra

UN|VERS|TAT — Pr;ll‘. l?)r. MTGHA?FT
GIESSEN echenkurs ,, Algebra mi

gap> StructureDescription(H);
"S4 x S4"

Be aware that non-isomorphic groups may still have identical descriptions. But in this case, the description
is unambiguous: The group H is isomorphic to the direct product ¥4 x ¥4

Exercise 6.5.1

Try to give a theoretical explanation of why we must have H = ¥4 x 34, based on how we defined H above.

Of course we can form direct products of groups explicitly, too; the result, however, is not necessarily what
you might expect from the naive definition of direct product; in particular, the direct products often are not
realized by forming tuples. This has efficiency reasons. Instead, one works with embedding and projection
maps. That is: Given G, G2, there are homomorphisms

L11G1—>G1XG2, L22G2—>G1XG2, 7T1201XG2—)Gl, 7T22G1XG2—>G2,
and these satisfy

mot =idg, , meol = consti,, , Mol =consti, , T20lr= idg, -

gap> K := DirectProduct(SymmetricGroup(3), AlternatingGroup(4));
Group([(1,2,3), (1,2), (4,5,6), (5,6,7) 1)

gap> iotal := Embedding(K,2);

1st embedding into Group([(1,2,3), (1,2), (4,5,6), (5,6,7) 1)
gap> (1,2,3)*%iotal;

(4,5,6)

gap> pil := Projection(K,1);

1st projection of Group([(1,2,3), (1,2), (4,5,6), (5,6,7) 1)
gap> (4,5,6)"pil;

O

gap> (4,5,6)"Projection(K,2);

(1,2,3)

6.6 Homework

(s6-h1) Suppose G is a group acting on a finite set X, and suppose for a € X we have a.G = {ay,as,...,a;}
with |a.G] = k € N and a; = a. Then a transversal for the orbit a.G is a set of group elements
{91,.-.,9r} C G such that a.g; = a; for 1 <1i < k.

Implement a function orbTrans(G,a,act) by which computes an orbit and a corresponding trans-
versal. That is, it should return a list 1 such that 1[1] is the orbit of a under G with respect to the
action act, and L[2] is a transversal for that orbit. So, for 1 < i < |I[1]|, one should have L[1][i] =
act(a, L[2][iD).

Start from orbitFast and modify it to compute the transversal.

Hint: Build the transversal at the same time you create the orbit. For x = a, we know a transversal
element, namely 1g, as a = a.1g. When looking at an arbitrary x € orb, if you know ¢t € G with
a.t = x, then you can deduce that z.g = (a.t).g = a.(tg).

JUSTUS-LIEBIG- Mathematisches Institut, AG Algebra

ﬁ UNIVERSITAT Prof. Dr. Max Horn

(s6-h2)

(s6-h3)

GIESSEN Rechenkurs ,,Algebra mit GAP"

Let G be a group, g € G and n a positive integer. Computing g™ in the naive, straight-forward
fashion requires n — 1 multiplications. For large values of n, this can be very expensive, e.g. if g is
large matrix. One can do much better. For example, to compute g2, it suffices to compute g2, then
g* = (¢°)? and finally g8 = (¢g*)2. So we needed three multiplications instead of seven.

This can be generalized as follows: First, represent n in binary, i.e.
k .
n=bo+2by +4by + - + 280 = Y 2,
i=0
where k € N such that 28 <n < 25+ and by, ...,b; € {0,1}. Then
k2, 2%,
g'fL — g i=0 i — Hg i
i=0

Thus we need to compute the k41 powers gQi and up to k product of some of these powers (depending
on whether b; is 0 or 1.

Implement a function Pow(g,n) which takes a group element g and an integer n, and returns g",
computed using the scheme described above. In particular, it should use not more than approximately
2k + 1 multiplications of group elements.

Hint: Do not try to actually represent n as a binary number, doing that is inefficient. Instead, try
to come up with a recursive description: by is 0 if and only if n is even. Next, by is 0 if and only if
(n —bg)/2 is even, and so on. If you arrange things in a clever fashion, you do not need to store the
b;.

Hint: Start by working out with pen and paper what needs to be done for some small values of n,
say n € {—1,0,1,2,19}.

*** next time, also ask them to do a PowMod ***

The Small Groups Library shipped with GAP contains all groups of order at most 2000, up to
isomorphism and excluding the 49487 365 422 groups of order 1024. With NumberSmallGroups(n) you
can find out how many isomorphism types of groups of order n there are. With ALlSmallGroups(n)
you get a list of representatives of the groups of order n; and with ALlSmallGroups(n, IsAbelian)
you get just the abelian ones. For example, to find out how many groups of order 32 are abelian, we
can do this:

gap> Length(AllSmallGroups(32, IsAbelian));
7

Write a function numAbel(n) which computes the number of abelian groups (up to isomorphism) of
order n without using the Small Groups library. Instead, use the classification of finite abelian groups,
which states that every finite abelian group is isomorphic to a direct product of finite cyclic groups
of prime power order.

Hint: First determine how many isomorphism types of abelian groups of order p™ there are, for p a
prime and n € N. Show that this only depends on the number n, and not on the prime p.

Next, suppose A is a finite abelian group of order pi* - --p;* for pairwise distinct primes py,...,pg.
Then A = Ay, x ... x Ap,, where the A, are the p;-Sylow subgroups of A. How big are the A7
How many possible isomorphism types for A are there?

Some GAP functions that may be very helpful for this exercise are Factors and NrPartitions.

	More on groups
	Action and orbits
	Computing orbits: naive approach
	Faster orbit computation
	Even faster orbit computation
	A bunch of useful functions for groups
	Homework

