
Mathematisches Institut, AG Algebra
Prof. Dr. Max Horn

Rechenkurs „Algebra mit GAP“

Worksheet 4
Version 2014-12-03

4 Permutations and groups

4.1 Permutations

Permutations of positive integers can be entered directly in GAP via cycle notation.

gap> pi := (1,2,3)(4,5)(7,8);
(1,2,3)(4,5)(7,8)

There are two natural ways to define the product of two permutations: LetX be a set, x ∈ X and π1, π2 ∈ ΣX .
For the left action (reading from right-to-left), the multiplication is given by

(π1 ◦ π2)(x) = π1(π2(x)) ,

while for the right action (reading from left-to-right), the multiplication is given by

xπ1π2 = (xπ1)π2 .

As with matrices (see worksheet 2), GAP uses right actions, which is visible in how permutations are multi-
plied, or applied to elements:1

gap> (1,2) * (1,3);
(1,2,3)
gap> 1^(1,2);
2

The order of a permutation (or, for that matter, arbitrary group elements) can be determined using Order.

gap> Order((1,2,3)(4,5));
6

When writing code working with permutations, it can be helpful to convert a permutation π to a list where
the i-th entry corresponds to iπ, and back.

gap> pi := (1,2,3)(4,5)(7,8);;
gap> l := ListPerm(pi);
[2, 3, 1, 5, 4, 6, 8, 7]
gap> PermList(l);
(1,2,3)(4,5)(7,8)

Some other useful commands for working with permutations are SignPerm, CycleStructurePerm and MovedPoints.
As always, you can find out more about a command by entering ?cmd in GAP, or by consulting the docu-
mentation. In particular Chapter 42 of the GAP reference manual.

1It is a common convention that xˆy stands for xy .

1

http://www.gap-system.org/Manuals/doc/ref/chap42.html

Mathematisches Institut, AG Algebra
Prof. Dr. Max Horn

Rechenkurs „Algebra mit GAP“

4.2 Symmetric groups

GAP knows about permutations and about groups, and of course also symmetric groups:

gap> S3 := SymmetricGroup(3);
Sym([1 .. 3])

You can use GAP to get all elements of a group (but beware of doing this with large groups):

gap> Elements(S3);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

In GAP, groups (and subgroups) are more than simply lists of elements. You can query them about group
theoretic information about themselves, and once something has been computed, they usually “remember” it.

gap> Size(S3);
6
gap> IsAbelian(S3);
false

Remark 4.2.1
You can find out what a group knows about itself with help of the commands KnownAttributesOfObject(G),
KnownTruePropertiesOfObject and KnownPropertiesOfObject(G) – try them (and remember to use TAB
completion to enter these commands).

We can also construct many other groups, such as alternating groups.

gap> G := AlternatingGroup(6);
gap> Size(G) = Factorial(6) / 2;
true
gap> ForAll(G, g -> SignPerm(g) = 1); # alternating group is kernel of sign homomorphism
true

4.3 Permutation groups

A permutation group is a subgroup of Σn for some n ∈ N∗. Given some permutations π1, . . . , πk, they
generate a permutation group 〈π1, . . . , πk〉. In GAP, we can do this with the commands Subgroup and Group.
Conversely, given a group G, we may obtain a generating set for it via GeneratorsOfGroup.

gap> g1:=(1,2,3,4);; g2:=(1,2)(3,4);;
gap> H:=Group(g1, g2);
Group([(1,2,3,4), (1,2)(3,4)])
gap> GeneratorsOfGroup(H);
[(1,2,3,4), (1,2)(3,4)]

2

Mathematisches Institut, AG Algebra
Prof. Dr. Max Horn

Rechenkurs „Algebra mit GAP“

Exercise 4.3.1
1. Suppose G = 〈g1, . . . , gn〉. Show that G is abelian if and only if gigj = gjgi for 1 ≤ i < j ≤ n.
2. In GAP, you can determine a set of generators for a group G via the command GeneratorsOfGroup.

Write a function isAbel(G), which, given a group G, returns true if G is abelian, and false otherwise.
Do not use IsAbelian or IsCommutative.

GAP can do a lot of things with such groups. A few minor examples:

gap> IsAbelian(H);
false
gap> Size(H);
8
gap> Elements(H);
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3)]

Exercise 4.3.2
The group H is actually isomorphic to the symmetries of a square. Describe this isomorphism.

Using the command IsSubgroup(G,H) one can ask GAP to test whether the group H is a subgroup of G.

gap> S4 := SymmetricGroup(4);;
gap> IsSubgroup(S3, H);
false
gap> IsSubgroup(S4, H);
true

We can also test whether a subgroup is normal, and compute various standard subgroups.

gap> N := Center(H); # = { g in H | forall h in h: gh = hg }
Group([(1,3)(2,4)])
gap> IsNormal(H,N);
true
gap> K := DerivedSubgroup(H); # = < g^-1 h^-1 g h | g,h \in H >
Group([(1,3)(2,4)])
gap> TrivialSubgroup(H);
Group(())

Exercise 4.3.3
Write a function cent(G) which returns a list containing precisely the elements of the center of a finite
group G, but without using Center. Test your program with multiple groups e.g. SymmetricGroup(n) for
various n, and also with this group:

1 G := Group((1,8,14,2,9,15,3,7,13)(4,10,16)(5,11,17)(6,12,18),
2 (1,7)(2,8)(3,9)(4,11,5,12,6,10));

Let’s compute the quotient of H by one of its normal subgroup:

3

Mathematisches Institut, AG Algebra
Prof. Dr. Max Horn

Rechenkurs „Algebra mit GAP“

gap> K := H/N;
<pc group with 2 generators>

It turns out the group GAP computed here is not a permutation group, but rather a so-called “pc-group”.
Whatever it is, we can still work with it, and its elements.

gap> elms := Elements(K);
[<identity> of ..., f1, f2, f1*f2]
gap> elms[2] * elms[3];
f1*f2

By the way, conjugation of elements is also supported, again with the convention that xˆy stands for xy.

gap> elms[2] ^ elms[3];
f1
gap> (1,2,3)^(1,4);
(2,3,4)

Exercise 4.3.4
1. The exponent exp(G) of a finite group G is the least n ∈ N∗ such that gn = 1G for all g ∈ G. Show

that exp(G) = lcm(o(g) | g ∈ G).
2. Write a function exp(G) which returns the exponent of a given (finite) group G.

4.4 Group homomorphisms

For specific groups U ≤ G, N EG, we can use GAP to, for example, verify the second isomorphism theorem:

gap> G:=S4;; N:=Subgroup(G, [(1,2)(3,4), (1,3)(2,4)]);; U:=S3;
gap> UN := ClosureGroup(U,N);
Group([(1,3), (2,3), (1,2)(3,4)])
gap> UN = G; # UN turns out to be all of G
true
gap> A := UN/N;; B := U/Intersection(U,N);;
gap> iso := IsomorphismGroups(A, B); # construct an i
[f1, f2] -> [(2,3), (1,2,3)]
gap> IsomorphismGroups(S4, S3); # of course S3 and S4 are not isomorphic
fail

We can also ask for the natural quotient epimorphism G→ G/N :

gap> epi := NaturalHomomorphismByNormalSubgroup(G,N);
[(1,2,3,4), (1,2)] -> [f1*f2, f1]

The objects iso and epi are group homomorphism objects. We can ask them for their domain, range and
image, and test various properties, and of course, apply them to elements. For more on group homomorphisms
in GAP, see Chapter 32 of the GAP reference manual.

4

http://www.gap-system.org/Manuals/doc/ref/chap32.html

Mathematisches Institut, AG Algebra
Prof. Dr. Max Horn

Rechenkurs „Algebra mit GAP“

gap> Source(epi); Range(epi); # domain and range of epi are G and G/N
Sym([1 .. 4])
Group([f1, f2])
gap> Kernel(epi) = N; # the kernel of epi of course is N
true
gap> IsTrivial(Kernel(iso)); # iso is an isomorphism, so its kernel is trivial
true
gap> IsBijective(iso); IsBijective(epi); # iso is bijective, epi is not
true
false
gap> G.1; # handy short cut: the first generator of G ...
(1,2,3,4)
gap> G.1 ^ epi; # ... is mapped by epi to this element:
f1*f2

4.5 Homework

(s4-h1) Implement a function ElemOrders(G) which takes a finite group G, and returns a list of pairs of
integers [[o1, n1], ..., [ok, nk]] such that ni is the number of elements of order oi in G, for 1 ≤ i ≤ k,
and

∑k
i=1 ni = |G|. Try to make your program efficient; computing ElemOrders(SymmetricGroup(9))

should take less than 10 seconds.

Hint: The commands DivisorsInt and Sort may or may not be helpful to you. The command
Collected is even more useful, but you are not allowed to use it for this exercise.

(s4-h2) Write a function isHom(G,H,f) whose arguments are two finite groups G and H, and an unary
function f (you may assume that f maps elements of G to H without verifying it). Your program
should check whether f describes a homomorphism, and if so, compute some of its properties: If f
is not a homomorphism, return fail. If it is, return a list [K, isInj, isSurj], where K should
be a list with the elements of the kernel (without duplicates), and isInj and isSurj are booleans
indicating whether the function is injective and / or surjective.

Note: You should do this without using the GAP functions for working with homomorphisms, such
as Kernel, IsInjective. Instead, you should loop over the group elements as needed. It is possible
to solve the problem using only the function Size, One and Add.

Hint: You can get the unit element of a group using One. Once you have K, it is easy to compute
isSurj using the first isomorphism theorem, by comparing the sizes of the various lists and groups
suitably. Finally, here are some simple examples:

gap> G := SymmetricGroup(3);;
gap> isHom(G, G, x -> One(G));
[[(), (1,3), (1,2,3), (2,3), (1,3,2), (1,2)], false, false]
gap> isHom(G, G, x -> x);
[[()], true, true]
gap> isHom(G, SymmetricGroup(4), x -> x);
[[()], true, false]

(s4-h3) Write a function PermMul(g,h) which computes the product gh of two permutations without using
*. Hint: Use PermList and ListPerm.

5

	Permutations and groups
	Permutations
	Symmetric groups
	Permutation groups
	Group homomorphisms
	Homework

