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Chevalley groups: SLn+1

Starting point: Chevalley groups. These are essentially determined by
1. a field F and
2. a (spherical) root system (more specifically, a root datum).

Root systems can be described and classified by Dynkin diagrams.

Example
G = SLn+1(F) corresponds to root system of type An with this diagram:

1 2 n − 1 n

(Also true for PSLn+1; one needs a root datum to distinguish between them.)

For algebraically closed fields one obtains connected semi-simple linear algebraic
groups; for finite fields (untwisted) finite groups of Lie type.
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SL3 as an example; root groups

Let n = 2 and G = SL3(F). The associated root system Φ of type A2:

α

α + ββ

−α

−α− β −β

To each root ρ ∈ Φ a root group Uρ
∼= (F, +) of G is associated:

Uα =
〈(

1 ∗ 0
1 0

1

)〉
, Uβ =

〈(
1 0 0

1 ∗
1

)〉
, Uα+β =

〈(
1 0 ∗

1 0
1

)〉
, U−α = (UT

α )−1, ...

The root groups, the (commutator) relations between them and the torus
T :=

⋂
ρ∈Φ NG (Uρ) (diagonal matrices in G ) determine G completely.
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Kac-Moody groups

Kac-Moody groups generalize Chevalley groups in a natural way. Again take . . .
1. a field F and
2. a root system (root datum) whose Dynkin diagram has edge labels in
{3, 4, 6, 8,∞}.

(Again: need root datum, not just root system, to distinguish SL from PSL.)

Example
Let F[t, t−1] denote the ring of Laurent polynomials over F.
G = SLn+1(F[t, t−1]) is a Kac-Moody group over F with root system of type Ãn:

1 2 n − 1 n

n + 1

Remark: In general, Kac-Moody groups are not linear.
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Root groups in Kac-Moody groups

To obtain the root system of type Ãn we add a new root corresponding to the
lowest root in An. For n = 2, we get a new root γ corresponding to −α− β.

The positive fundamental root groups now are:

Uα =
〈(

1 a 0
1 0

1

)
| a ∈ F

〉
, Uβ =

〈(
1 0 0

1 a
1

)
| a ∈ F

〉
, Uγ =

〈(
1
0 1
at 0 1

)
| a ∈ F

〉
.

The negative root groups can be obtained from the positive ones by applying the
Chevalley-Cartan involution of G : Transpose, invert and swap t and t−1, hence

U−γ =
〈(

1 0 −at−1

1 0
1

)
| a ∈ F

〉
and Uα, Uβ as before.

G is generated by its root groups.

Important consequence: The groups U+ = 〈Uρ | ρ ∈ Φ+〉 and
U− = 〈Uρ | ρ ∈ Φ−〉 are no longer conjugate to each other.
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What is a building

Let G be a group with root datum.

The building C(G ) of G can be realized as . . .
I . . . a homogeneous space G/B, where B = NG (U) and U is generated by all

positive root groups.
Example: For G = SLn+1(F),

I U is the group of unit upper triangular matrices and
I B is the group of upper triangular matrices.

I . . . CAT(0)-spaces, an incidence geometry, a Chamber system, . . .

I . . . a simplicial complex: Take as simplices all proper subgroups of G
containing B, ordered by reverse inclusion.

Careful: One group may act on several buildings. But the choice of a system of
root groups resp. the group B determines the building.
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Some properties of buildings

Leg G be a group with root datum, denote by C = C(G ) its associated building
and by (W , S) its Coxeter system.

Some properties of C:
I Labeled simplicial complex, with labels from S → every simplex has a type.

I System A of subcomplexes called apartments, each isomorphic to the Coxeter
complex of (W , S). Any two simplices are contained in at least one
apartment.

I Weyl-distance δ : C × C →W assigns “distances” to pairs of simplices.

I numerical distance l : C × C → N defined by l(σ1,σ2) := l(δ(σ1,σ2)).

I Building is called spherical if l is bounded → notion of opposite simplices.
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Unitary forms

I Let G be Chevalley / Kac-Moody group over F, and σ ∈ Aut(F) with σ2 = id.
I Let θ be the composition of the Chevalley-Cartan involution of G with σ. For

SLn(F):
θ : x 7→ (σ(x)T )−1.

I Then K := FixG (θ) is called (σ-)unitary form of G .

Examples

G σ K Remark

SLn+1(F) idF SOn+1(F)
SLn+1(C) x 7→ x̄ SUn+1(R) defined over C; R-form of G
SLn+1(Fq2 ) x 7→ xq SUn+1(Fq) defined over Fq2

Sp2n(Fq2 ) x 7→ xq Sp2n(Fq)
SLn+1(Fq2 [t, t−1]) x 7→ xq SUn+1(X ) X = 〈λ · (t + εt−1) | ε = ±1,

λ ∈ Fq2 ,σ(λ) = ελ〉
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Geometries for unitary forms

Let G be group with root datum, let C be its building. Can we define a useful
analog of C for a unitary form K of G?

Assume B− = Bg
+, for some g ∈ G .

I θ induces involutory automorphism of C = G/B+:

θ : G/B+ → G/B+ : xB+ 7→ θ(xB+)g = θ(x)B−g = θ(x)gB+.

I For σ ∈ C define θ-distance δθ(σ) := δ(σ, θ(σ)).

I For k ∈ K we have δθ(kσ) = δ(kσ, θ(kσ)) = δ(kσ, kθ(σ)) = δθ(σ).

I Define flip-flop system Cθ := {σ ∈ C | l(δθ(σ)) is maximal}.

Clearly K acts on Cθ. But is it the “right” set? Does it have good properties?

What about the set Cθ of all simplices fixed by θ?
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Overview

Groups with a root datum

Buildings

Unitary forms

Flip-flop systems and Phan geometries

Properties and applications of flip-flop systems
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Applications

I Phan type theorems (Bennett, Devillers, Gramlich, Hoffman, H., Mühlherr, Nickel, Shpectorov)

I New lattices in Kac-Moody groups (Gramlich, Mühlherr)

I Automorphisms of unitary forms of Kac-Moody groups (Kac, Peterson; Caprace;

Gramlich, Mars)

I Representation theory (Devillers, Gramlich, Mühlherr, Witzel):
Generalize Solomon-Tits theorem

I Generalized Iwasawa decomposition (De Medts, Gramlich, H.):
G split conn. reductive F-group / Kac-Moody group over F. When does GF
admit a decomposition GF = KFBF (where K is centralizer of an involution)?
(Inspired by Helminck & Wang, 1993.)

I Finiteness properties (Caprace, Devillers, Gramlich, H., Mühlherr, Witzel)
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Structure of flip-flop systems: Good pairs

I Let θ be an involutory almost-isometry of a building C.

I For σ ∈ C the local flip-flop system Cθ
σ consists of simplices in lk σ for which

the numerical θ-distance is maximal among all simplices in the link.

I Call (C, θ) a good pair if for all corank-2 simplices σ ∈ C, Cθ
σ is path

connected and “allows direct ascent”.

Theorem (Gramlich, H., Mühlherr 2008)
If (C, θ) is a good pair, then Cθ is path connected and pure, i.e., all its maximal
simplices have equal type J ⊂ S . Moreover Cθ is residually connected, hence there
exists an associated incidence geometry, the Phan geometry.

Example (Bennet, Shpectorov)
Let θ be a twisted Chevalley involution of SLn(F), n ≥ 3 and (n, F) 6= (3, F4).
Then (C(SLn(F)), θ) is a good pair.
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Structure of flip-flop systems:
Sketch of proof

Start with two arbitrary maximal simplices σ1 and σ2 in Cθ.
I Choose maximal simplices σ̄i in C, i ∈ {1, 2}, such that σi ⊆ σ̄i .

I Fix a minimal gallery γ between σ̄1 and σ̄2 inside C.

I Consider Cθ
σ for corank-2 simplices σ in γ. Using our conditions on these,

transform γ by “bypassing” chambers with low numerical θ-distance,
gradually increasing the maximal numerical θ-distance of chambers in γ.

I Ultimately, num. θ-distance is non-decreasing along γ → actually constant.

I Show: Adjacent chambers with equal num. θ-distance have equal θ-distance
=⇒ σ̄1 and σ̄2 have equal θ-distance
=⇒ σ1 and σ2 have same type and Cθ is connected.

I Finally, show that residual connectedness is inherited from C.
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Finding good pairs

Theorem (H., van Maldeghem 2009)
Let G be a group with 2-spherical F-locally split root group datum, where
charF 6= 2 and |F| ≥ 5. Then (C(G ), θ) is a good pair for any (twisted) Chevalley
involution θ of G .

Proof by studying local case, i.e., involutions and polarities of Moufang planes,
quadrangles and hexagons. Determine: Rθ connected? Direct ascent into Rθ

possible?

Corollary
Let G be a group with 2-spherical F-locally split root group datum, where
charF 6= 2 and |F| ≥ 5. Then Cθ is pure and residually connected, hence
geometric, for any (twisted) Chevalley involution θ of G .
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On finitely generated unitary forms

In geometric group theory, so-called finiteness properties of groups are of high
interest. (Examples: finite generation and finite presentation.)

Theorem (Gramlich, H., and Mühlherr, 2009)
Let G be a 2-spherical Kac-Moody group over a finite field Fq, q odd and ≥ 5.
Suppose θ is an involutory automorphism which interchanges the two conjugacy
classes of Borel subgroups. Then K := FixG (θ) is finitely generated.

I Constant bound on q, does not depend on the rank of G .

I Can be extended to even q for properly twisted Chevalley involutions.

I If G is not 2-spherical, then K may not be finitely generated.
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On finitely generated unitary forms:
Sketch of proof

Recall that Cθ is a subcomplex of the building ∆ and K acts on it.

1. G is Fq-locally split and q odd =⇒ Cθ is pure and path connected.

2. Denote by Cθ union of Cθ with stars in C of all maximal simplices of Cθ.

3. K acts on maximal simplices in Cθ. Assume there is only a single K -orbit.

4. Cθ is connected ⇐⇒ Cθ is connected. Pick a maximal simplex σ0 ∈ Cθ:

K = 〈StabK (σ) | σ is a facet of σ0〉 .

5. Caprace and Mühlherr: Stabilizers in K of corank-1 simplices of C are finite.

6. In general, show that there are only finitely many K -orbits on Cθ: Identify
them bijectively with orbits on a maximal θ-split torus T of G acting on itself
via (t1, t2) 7→ θ(t2)−1t1t2. But here maximal tori are finite.

7. From this we can conclude the general result with a standard argument.
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Unitary forms are finitely generated:
Well, not always . . .

Let G be a non-spherical Kac-Moody group over Fq2 with unitary form K .

We have seen: if G is 2-spherical and q2 > 4, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by
Caprace, Gramlich and Mühlherr.

I Let T be a tree residue of the building. Then G .T is a simplicial tree
(Dymara/Januszkiewicz).

I The key insight is the following: The action of the lattice K on the simplicial
tree G .T is minimal but . . .

I . . . there are infinitely many K -orbits on G .T .
I It follows (Bass) that the lattice K cannot be finitely generated.

Based on this evidence, one might conjecture: If G is (m + 1)-spherical, then K is
of type Fm and “usually” the converse holds.
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