The geometry of involutions of algebraic groups and of Kac-Moody groups

TECHNISCHE UNIVERSITÄT DARMSTADT

International Workshop on Algebraic Groups, Quantum Groups and Related Topics

July 19, 2009

Max Horn TU Darmstadt, Germany mhorn@mathematik.tu-darmstadt.de

July 19, 2009 | TU Darmstadt | Max Horn | 1

Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems

Overview

• Groups with a root datum

- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems

Chevalley groups: SL_{n+1}

Starting point: Chevalley groups. These are essentially determined by

- 1. a field ${\mathbb F}$ and
- 2. a (spherical) root system (more specifically, a root datum).

Root systems can be described and classified by Dynkin diagrams. Example

 $G = SL_{n+1}(\mathbb{F})$ corresponds to root system of type A_n with this diagram:

(Also true for PSL_{n+1} ; one needs a root datum to distinguish between them.)

For algebraically closed fields one obtains connected semi-simple linear algebraic groups; for finite fields (untwisted) finite groups of Lie type.

Chevalley groups: SL_{n+1}

Starting point: Chevalley groups. These are essentially determined by

- 1. a field ${\mathbb F}$ and
- 2. a (spherical) root system (more specifically, a root datum).

Root systems can be described and classified by Dynkin diagrams.

Example

 $G = SL_{n+1}(\mathbb{F})$ corresponds to root system of type A_n with this diagram:

(Also true for PSL_{n+1} ; one needs a root datum to distinguish between them.)

For algebraically closed fields one obtains connected semi-simple linear algebraic groups; for finite fields (untwisted) finite groups of Lie type.

Chevalley groups: SL_{n+1}

Starting point: Chevalley groups. These are essentially determined by

- 1. a field ${\mathbb F}$ and
- 2. a (spherical) root system (more specifically, a root datum).

Root systems can be described and classified by Dynkin diagrams.

Example

 $G = SL_{n+1}(\mathbb{F})$ corresponds to root system of type A_n with this diagram:

(Also true for PSL_{n+1} ; one needs a root datum to distinguish between them.)

For algebraically closed fields one obtains connected semi-simple linear algebraic groups; for finite fields (untwisted) finite groups of Lie type.

July 19, 2009 | TU Darmstadt | Max Horn | 4

SL₃ as an example; root groups

Let n = 2 and $G = SL_3(\mathbb{F})$. The associated root system Φ of type A_2 :

To each root $ho \in \Phi$ a root group $U_{
ho} \cong (\mathbb{F}, +)$ of G is associated:

$$U_{\alpha} = \left\langle \left(\begin{smallmatrix} 1 & * & 0 \\ 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \right\rangle, U_{\beta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & * \\ 1 & 1 \end{smallmatrix}\right) \right\rangle, U_{\alpha+\beta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & * \\ 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \right\rangle, U_{-\alpha} = (U_{\alpha}^{T})^{-1}, \dots$$

The root groups, the (commutator) relations between them and the torus $T := \bigcap_{\rho \in \Phi} N_G(U_{\rho})$ (diagonal matrices in G) determine G completely.

SL₃ as an example; root groups

Let n = 2 and $G = SL_3(\mathbb{F})$. The associated root system Φ of type A_2 :

To each root $\rho \in \Phi$ a root group $U_{\rho} \cong (\mathbb{F}, +)$ of G is associated:

$$U_{lpha} = \left\langle \left(\begin{smallmatrix} 1 & * & 0 \\ 1 & 0 \\ 1 \end{smallmatrix} \right) \right\rangle$$
, $U_{eta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & * \\ 1 \end{smallmatrix} \right) \right\rangle$, $U_{lpha+eta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & * \\ 1 & 0 \\ 1 \end{smallmatrix} \right) \right\rangle$, $U_{-lpha} = (U_{lpha}^{T})^{-1}$, ...

The root groups, the (commutator) relations between them and the torus $T := \bigcap_{\rho \in \Phi} N_G(U_{\rho})$ (diagonal matrices in G) determine G completely.

SL₃ as an example; root groups

Let n = 2 and $G = SL_3(\mathbb{F})$. The associated root system Φ of type A_2 :

To each root $\rho \in \Phi$ a root group $U_{\rho} \cong (\mathbb{F}, +)$ of G is associated:

$$U_{\alpha} = \left\langle \left(\begin{smallmatrix} 1 & * & 0 \\ 1 & 0 \\ 1 \end{smallmatrix}\right) \right\rangle, U_{\beta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & * \\ 1 \end{smallmatrix}\right) \right\rangle, U_{\alpha+\beta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & * \\ 1 & 0 \\ 1 \end{smallmatrix}\right) \right\rangle, U_{-\alpha} = (U_{\alpha}^{\mathsf{T}})^{-1}, \dots$$

The root groups, the (commutator) relations between them and the torus $T := \bigcap_{\rho \in \Phi} N_G(U_\rho)$ (diagonal matrices in *G*) determine *G* completely.

Kac-Moody groups

Kac-Moody groups generalize Chevalley groups in a natural way. Again take \ldots

- 1. a field ${\mathbb F}$ and
- 2. a root system (root datum) whose Dynkin diagram has edge labels in $\{3,4,6,8,\infty\}.$

(Again: need root datum, not just root system, to distinguish SL from PSL.)

Example

Let $\mathbb{F}[t, t^{-1}]$ denote the ring of Laurent polynomials over \mathbb{F} .

 $G = SL_{n+1}(\mathbb{F}[t, t^{-1}])$ is a Kac-Moody group over \mathbb{F} with root system of type $\widetilde{A_n}$:

Remark: In general, Kac-Moody groups are not linear.

Kac-Moody groups

Kac-Moody groups generalize Chevalley groups in a natural way. Again take \ldots

- 1. a field ${\mathbb F}$ and
- 2. a root system (root datum) whose Dynkin diagram has edge labels in $\{3,4,6,8,\infty\}.$

(Again: need root datum, not just root system, to distinguish SL from PSL.)

Example

Let $\mathbb{F}[t, t^{-1}]$ denote the ring of Laurent polynomials over \mathbb{F} . $G = SL_{n+1}(\mathbb{F}[t, t^{-1}])$ is a Kac-Moody group over \mathbb{F} with root system of type $\widetilde{A_n}$:

Remark: In general, Kac-Moody groups are not linear.

Kac-Moody groups

Kac-Moody groups generalize Chevalley groups in a natural way. Again take \ldots

- 1. a field ${\mathbb F}$ and
- 2. a root system (root datum) whose Dynkin diagram has edge labels in $\{3,4,6,8,\infty\}.$

(Again: need root datum, not just root system, to distinguish SL from PSL.)

Example

Let $\mathbb{F}[t, t^{-1}]$ denote the ring of Laurent polynomials over \mathbb{F} . $G = SL_{n+1}(\mathbb{F}[t, t^{-1}])$ is a Kac-Moody group over \mathbb{F} with root system of type $\widetilde{A_n}$:

Remark: In general, Kac-Moody groups are *not* linear.

July 19, 2009 | TU Darmstadt | Max Horn | 6

To obtain the root system of type A_n we add a new root corresponding to the lowest root in A_n . For n = 2, we get a new root γ corresponding to $-\alpha - \beta$.

The positive fundamental root groups now are:

$$U_{\alpha} = \left\langle \left(\begin{smallmatrix} 1 & a & 0 \\ 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle, U_{\beta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & a \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle, U_{\gamma} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 1 \\ 0 & 1 \\ at & 0 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle.$$

The negative root groups can be obtained from the positive ones by applying the Chevalley-Cartan involution of G: Transpose, invert and swap t and t^{-1} , hence

$$U_{-\gamma} = \left\langle \left(\begin{smallmatrix} 1 & 0 & -at^{-1} \\ 1 & 0 \\ 1 \end{smallmatrix}
ight) \mid a \in \mathbb{F} \right\rangle$$
 and U_{lpha} , U_{eta} as before.

G is generated by its root groups.

To obtain the root system of type \widetilde{A}_n we add a new root corresponding to the lowest root in A_n . For n = 2, we get a new root γ corresponding to $-\alpha - \beta$. The positive fundamental root groups now are:

$$U_{\alpha} = \left\langle \left(\begin{smallmatrix} 1 & a & 0 \\ 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle, U_{\beta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & a \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle, U_{\gamma} = \left\langle \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \\ at & 0 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle.$$

The negative root groups can be obtained from the positive ones by applying the Chevalley-Cartan involution of G: Transpose, invert and swap t and t^{-1} , hence

$$U_{-\gamma} = \left\langle \begin{pmatrix} 1 & 0 & -at^{-1} \\ 1 & 0 \\ 1 \end{pmatrix} \mid a \in \mathbb{F} \right\rangle \quad \text{ and } U_{\alpha}, U_{\beta} \text{ as before.}$$

G is generated by its root groups.

To obtain the root system of type A_n we add a new root corresponding to the lowest root in A_n . For n = 2, we get a new root γ corresponding to $-\alpha - \beta$. The positive fundamental root groups now are:

$$U_{\alpha} = \left\langle \left(\begin{smallmatrix} 1 & a & 0 \\ 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle, U_{\beta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & a \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle, U_{\gamma} = \left\langle \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \\ at & 0 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle.$$

The negative root groups can be obtained from the positive ones by applying the Chevalley-Cartan involution of G: Transpose, invert and swap t and t^{-1} , hence

$$U_{-\gamma}=\left\langle \left(egin{array}{cc}1&0&-at^{-1}\1&0\end{array}
ight)\mid a\in\mathbb{F}
ight
angle ext{ and }U_{lpha}$$
 , U_{eta} as before.

G is generated by its root groups.

To obtain the root system of type \widetilde{A}_n we add a new root corresponding to the lowest root in A_n . For n = 2, we get a new root γ corresponding to $-\alpha - \beta$. The positive fundamental root groups now are:

$$U_{\alpha} = \left\langle \left(\begin{smallmatrix} 1 & a & 0 \\ 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle, U_{\beta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & a \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle, U_{\gamma} = \left\langle \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \\ at & 0 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle.$$

The negative root groups can be obtained from the positive ones by applying the Chevalley-Cartan involution of G: Transpose, invert and swap t and t^{-1} , hence

$$U_{-\gamma}=\left\langle \left(egin{array}{cc}1&0&-at^{-1}\1&0\end{array}
ight)\mid a\in\mathbb{F}
ight
angle ext{ and }U_{lpha}$$
 , U_{eta} as before.

G is generated by its root groups.

To obtain the root system of type \widetilde{A}_n we add a new root corresponding to the lowest root in A_n . For n = 2, we get a new root γ corresponding to $-\alpha - \beta$. The positive fundamental root groups now are:

$$U_{\alpha} = \left\langle \left(\begin{smallmatrix} 1 & a & 0 \\ 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle, U_{\beta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & a \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle, U_{\gamma} = \left\langle \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \\ at & 0 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F} \right\rangle.$$

The negative root groups can be obtained from the positive ones by applying the Chevalley-Cartan involution of G: Transpose, invert and swap t and t^{-1} , hence

$$U_{-\gamma} = \left\langle \left(egin{array}{cc} 1 & 0 & -at^{-1} \\ 1 & 0 \\ 1 \end{array}
ight) \mid a \in \mathbb{F}
ight
angle \hspace{0.5cm} ext{and} \hspace{0.5cm} U_{lpha} ext{,} \hspace{0.5cm} U_{eta} ext{ as before.}$$

G is generated by its root groups.

Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems

Let G be a group with root datum.

The building C(G) of G can be realized as ...

▶ ... a homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive root groups.

Example: For $G = SL_{n+1}(\mathbb{F})$,

- U is the group of unit upper triangular matrices and
- B is the group of upper triangular matrices.
- ▶ ... CAT(0)-spaces, an incidence geometry, a Chamber system, ...
- ... a simplicial complex: Take as simplices all proper subgroups of G containing B, ordered by reverse inclusion.

Let G be a group with root datum.

The building C(G) of G can be realized as ...

• ... a homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive root groups.

Example: For $G = SL_{n+1}(\mathbb{F})$,

- U is the group of unit upper triangular matrices and
- B is the group of upper triangular matrices.
- ▶ ... CAT(0)-spaces, an incidence geometry, a Chamber system, ...
- ... a simplicial complex: Take as simplices all proper subgroups of G containing B, ordered by reverse inclusion.

Let G be a group with root datum.

The building C(G) of G can be realized as ...

• ... a homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive root groups.

Example: For $G = SL_{n+1}(\mathbb{F})$,

- ► U is the group of unit upper triangular matrices and
- B is the group of upper triangular matrices.

▶ ... CAT(0)-spaces, an incidence geometry, a Chamber system, ...

 ... a simplicial complex: Take as simplices all proper subgroups of G containing B, ordered by reverse inclusion.

Let G be a group with root datum.

The building C(G) of G can be realized as ...

• ... a homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive root groups.

Example: For $G = SL_{n+1}(\mathbb{F})$,

- U is the group of unit upper triangular matrices and
- ► *B* is the group of upper triangular matrices.

▶CAT(0)-spaces, an incidence geometry, a Chamber system,

 ... a simplicial complex: Take as simplices all proper subgroups of G containing B, ordered by reverse inclusion.

Let G be a group with root datum.

The building C(G) of G can be realized as ...

• ... a homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive root groups.

Example: For $G = SL_{n+1}(\mathbb{F})$,

- \blacktriangleright U is the group of unit upper triangular matrices and
- ► *B* is the group of upper triangular matrices.
- ▶ ... CAT(0)-spaces, an incidence geometry, a Chamber system, ...
- ... a simplicial complex: Take as simplices all proper subgroups of G containing B, ordered by reverse inclusion.

Let G be a group with root datum.

The building C(G) of G can be realized as ...

• ... a homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive root groups.

Example: For $G = SL_{n+1}(\mathbb{F})$,

- U is the group of unit upper triangular matrices and
- B is the group of upper triangular matrices.
- ▶ ... CAT(0)-spaces, an incidence geometry, a Chamber system, ...
- ... a simplicial complex: Take as simplices all proper subgroups of G containing B, ordered by reverse inclusion.

Let G be a group with root datum.

The building C(G) of G can be realized as ...

• ... a homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive root groups.

Example: For $G = SL_{n+1}(\mathbb{F})$,

- U is the group of unit upper triangular matrices and
- B is the group of upper triangular matrices.
- ▶ ... CAT(0)-spaces, an incidence geometry, a Chamber system, ...
- ... a simplicial complex: Take as simplices all proper subgroups of G containing B, ordered by reverse inclusion.

Leg G be a group with root datum, denote by C = C(G) its associated building and by (W, S) its Coxeter system.

Some properties of C:

- Labeled simplicial complex, with labels from $S \rightarrow$ every simplex has a type.
- System A of subcomplexes called apartments, each isomorphic to the Coxeter complex of (W, S). Any two simplices are contained in at least one apartment.
- Weyl-distance $\delta : C \times C \to W$ assigns "distances" to pairs of simplices.
- numerical distance $I : C \times C \to \mathbb{N}$ defined by $I(\sigma_1, \sigma_2) := I(\delta(\sigma_1, \sigma_2))$.
- Building is called spherical if I is bounded \rightarrow notion of opposite simplices.

Leg G be a group with root datum, denote by C = C(G) its associated building and by (W, S) its Coxeter system.

Some properties of \mathcal{C} :

- ▶ Labeled simplicial complex, with labels from $S \rightarrow$ every simplex has a type.
- System A of subcomplexes called apartments, each isomorphic to the Coxeter complex of (W, S). Any two simplices are contained in at least one apartment.
- Weyl-distance $\delta : C \times C \rightarrow W$ assigns "distances" to pairs of simplices.
- numerical distance $I : C \times C \to \mathbb{N}$ defined by $I(\sigma_1, \sigma_2) := I(\delta(\sigma_1, \sigma_2))$.
- Building is called spherical if *I* is bounded \rightarrow notion of opposite simplices.

Leg G be a group with root datum, denote by C = C(G) its associated building and by (W, S) its Coxeter system.

Some properties of C:

- ▶ Labeled simplicial complex, with labels from $S \rightarrow$ every simplex has a type.
- System A of subcomplexes called apartments, each isomorphic to the Coxeter complex of (W, S). Any two simplices are contained in at least one apartment.
- Weyl-distance $\delta : C \times C \rightarrow W$ assigns "distances" to pairs of simplices.
- numerical distance $I : C \times C \to \mathbb{N}$ defined by $I(\sigma_1, \sigma_2) := I(\delta(\sigma_1, \sigma_2))$.
- ▶ Building is called spherical if *I* is bounded → notion of opposite simplices.

Leg G be a group with root datum, denote by C = C(G) its associated building and by (W, S) its Coxeter system.

Some properties of C:

- ▶ Labeled simplicial complex, with labels from $S \rightarrow$ every simplex has a type.
- System A of subcomplexes called apartments, each isomorphic to the Coxeter complex of (W, S). Any two simplices are contained in at least one apartment.
- Weyl-distance $\delta : C \times C \rightarrow W$ assigns "distances" to pairs of simplices.

• numerical distance $I : C \times C \to \mathbb{N}$ defined by $I(\sigma_1, \sigma_2) := I(\delta(\sigma_1, \sigma_2))$.

• Building is called spherical if *I* is bounded \rightarrow notion of opposite simplices.

Leg G be a group with root datum, denote by C = C(G) its associated building and by (W, S) its Coxeter system.

Some properties of C:

- ▶ Labeled simplicial complex, with labels from $S \rightarrow$ every simplex has a type.
- System A of subcomplexes called apartments, each isomorphic to the Coxeter complex of (W, S). Any two simplices are contained in at least one apartment.
- Weyl-distance $\delta : C \times C \rightarrow W$ assigns "distances" to pairs of simplices.
- numerical distance $I : C \times C \to \mathbb{N}$ defined by $I(\sigma_1, \sigma_2) := I(\delta(\sigma_1, \sigma_2))$.
- Building is called spherical if *I* is bounded \rightarrow notion of opposite simplices.

Leg G be a group with root datum, denote by C = C(G) its associated building and by (W, S) its Coxeter system.

Some properties of C:

- ▶ Labeled simplicial complex, with labels from $S \rightarrow$ every simplex has a type.
- System A of subcomplexes called apartments, each isomorphic to the Coxeter complex of (W, S). Any two simplices are contained in at least one apartment.
- Weyl-distance $\delta : C \times C \to W$ assigns "distances" to pairs of simplices.
- numerical distance $I : C \times C \to \mathbb{N}$ defined by $I(\sigma_1, \sigma_2) := I(\delta(\sigma_1, \sigma_2))$.
- ▶ Building is called spherical if *I* is bounded → notion of opposite simplices.

Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems

▶ Let *G* be Chevalley / Kac-Moody group over \mathbb{F} , and $\sigma \in \operatorname{Aut}(\mathbb{F})$ with $\sigma^2 = \operatorname{id}$.

 $SL_n(\mathbb{F})$:

 $\theta: x \mapsto (\sigma(x)^T)^{-1}.$

• Then $K := \operatorname{Fix}_{G}(\theta)$ is called $(\sigma$ -)unitary form of G.

G	σ	K	Remark
$SL_{n+1}(\mathbb{F})$		$SO_{n+1}(\mathbb{F})$	
$SL_{n+1}(\mathbb{C})$	$x\mapsto \overline{x}$	$SU_{n+1}(\mathbb{R})$	defined over \mathbb{C} ; \mathbb{R} -form of G
$SL_{n+1}(\mathbb{F}_{q^2})$	$x \mapsto x^q$	$SU_{n+1}(\mathbb{F}_q)$	defined over \mathbb{F}_{q^2}
	$x\mapsto x^q$	$\operatorname{Sp}_{2n}(\mathbb{F}_q)$	
$SL_{n+1}(\mathbb{F}_{q^2}[t,t^{-1}])$	$x \mapsto x^q$	${\sf SU}_{n+1}(X)$	$X = \langle \lambda \cdot (t + \varepsilon t^{-1}) \mid \varepsilon = \pm 1,$
			$\lambda \in \mathbb{F}_{q^2}$, $\sigma(\lambda) = arepsilon \lambda angle$

- Let G be Chevalley / Kac-Moody group over \mathbb{F} , and $\sigma \in Aut(\mathbb{F})$ with $\sigma^2 = id$.
- Let θ be the composition of the Chevalley-Cartan involution of G with σ . For $SL_n(\mathbb{F})$:

 $\theta: x \mapsto (\sigma(x)^T)^{-1}.$

▶ Then $K := Fix_G(\theta)$ is called $(\sigma$ -)unitary form of G.

G	σ	K	Remark
$SL_{n+1}(\mathbb{F})$		$SO_{n+1}(\mathbb{F})$	
$SL_{n+1}(\mathbb{C})$	$x\mapsto \bar{x}$	$SU_{n+1}(\mathbb{R})$	defined over \mathbb{C} ; \mathbb{R} -form of G
$SL_{n+1}(\mathbb{F}_{q^2})$	$x \mapsto x^q$	$SU_{n+1}(\mathbb{F}_q)$	defined over \mathbb{F}_{q^2}
	$x \mapsto x^q$	$\operatorname{Sp}_{2n}(\mathbb{F}_q)$	
$SL_{n+1}(\mathbb{F}_{q^2}[t,t^{-1}])$	$x \mapsto x^q$	$SU_{n+1}(X)$	$X = \langle \lambda \cdot (t + \varepsilon t^{-1}) \mid \varepsilon = \pm 1,$
			$\lambda \in \mathbb{F}_{q^2}$, $\sigma(\lambda) = arepsilon \lambda angle$

- ▶ Let G be Chevalley / Kac-Moody group over \mathbb{F} , and $\sigma \in Aut(\mathbb{F})$ with $\sigma^2 = id$.
- Let θ be the composition of the Chevalley-Cartan involution of G with σ . For $SL_n(\mathbb{F})$:

$$\theta: x \mapsto (\sigma(x)^T)^{-1}$$

• Then $K := \operatorname{Fix}_{G}(\theta)$ is called $(\sigma$ -)unitary form of G.

G	σ	K	Remark
$SL_{n+1}(\mathbb{F})$		$SO_{n+1}(\mathbb{F})$	
$SL_{n+1}(\mathbb{C})$	$x\mapsto \bar{x}$	$SU_{n+1}(\mathbb{R})$	defined over \mathbb{C} ; \mathbb{R} -form of G
$SL_{n+1}(\mathbb{F}_{q^2})$	$x \mapsto x^q$	$SU_{n+1}(\mathbb{F}_q)$	defined over \mathbb{F}_{q^2}
	$x \mapsto x^q$	$\operatorname{Sp}_{2n}(\mathbb{F}_q)$	
$SL_{n+1}(\mathbb{F}_{q^2}[t,t^{-1}])$	$x \mapsto x^q$	${\rm SU}_{n+1}(X)$	$X = \langle \lambda \cdot (t + \varepsilon t^{-1}) \mid \varepsilon = \pm 1,$
			$\lambda \in \mathbb{F}_{q^2}$, $\sigma(\lambda) = arepsilon \lambda angle$

- ▶ Let G be Chevalley / Kac-Moody group over \mathbb{F} , and $\sigma \in Aut(\mathbb{F})$ with $\sigma^2 = id$.
- Let θ be the composition of the Chevalley-Cartan involution of G with σ . For $SL_n(\mathbb{F})$:

$$\theta: x \mapsto (\sigma(x)^T)^{-1}$$

• Then
$$K := \operatorname{Fix}_{G}(\theta)$$
 is called $(\sigma$ -)unitary form of G .

G	σ	K	Remark
$\overline{SL_{n+1}(\mathbb{F})}$	$id_{\mathbb{F}}$	$SO_{n+1}(\mathbb{F})$	
$SL_{n+1}(\mathbb{C})$	$x\mapsto \overline{x}$	$SU_{n+1}(\mathbb{R})$	defined over \mathbb{C} ; \mathbb{R} -form of G
$SL_{n+1}(\mathbb{F}_{q^2})$	$x\mapsto x^q$	$SU_{n+1}(\mathbb{F}_q)$	defined over \mathbb{F}_{q^2}
$\operatorname{Sp}_{2n}(\mathbb{F}_{q^2})$	$x\mapsto x^q$	$\operatorname{Sp}_{2n}(\mathbb{F}_q)$	
$SL_{n+1}(\mathbb{F}_{q^2}[t,t^{-1}])$	$x\mapsto x^q$	$SU_{n+1}(X)$	$X = \langle \lambda \cdot (t + arepsilon t^{-1}) \mid arepsilon = \pm 1,$
·			$\lambda \in \mathbb{F}_{q^2}$, $\sigma(\lambda) = arepsilon \lambda angle$
Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems

Let G be group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Assume $B_- = B_+^g$, for some $g \in G$.

• θ induces involutory automorphism of $C = G/B_+$:

 $\theta: G/B_+ \to G/B_+: xB_+ \mapsto \theta(xB_+)g = \theta(x)B_-g = \theta(x)gB_+.$

- For $\sigma \in C$ define θ -distance $\delta^{\theta}(\sigma) := \delta(\sigma, \theta(\sigma))$.
- For $k \in K$ we have $\delta^{\theta}(k\sigma) = \delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta^{\theta}(\sigma)$.
- Define flip-flop system $C^{\theta} := \{ \sigma \in C \mid I(\delta^{\theta}(\sigma)) \text{ is maximal} \}.$

Let G be group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Assume $B_- = B_+^g$, for some $g \in G$.

• θ induces involutory automorphism of $C = G/B_+$:

 $\theta: G/B_+ \to G/B_+: xB_+ \mapsto \theta(xB_+)g = \theta(x)B_-g = \theta(x)gB_+.$

- ▶ For $\sigma \in C$ define θ -distance $\delta^{\theta}(\sigma) := \delta(\sigma, \theta(\sigma))$.
- For $k \in K$ we have $\delta^{\theta}(k\sigma) = \delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta^{\theta}(\sigma)$.
- Define flip-flop system $C^{\theta} := \{ \sigma \in C \mid I(\delta^{\theta}(\sigma)) \text{ is maximal} \}.$

Let G be group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Assume $B_- = B_+^g$, for some $g \in G$.

• θ induces involutory automorphism of $C = G/B_+$:

 $\theta: G/B_+ \to G/B_+: xB_+ \mapsto \theta(xB_+)g = \theta(x)B_-g = \theta(x)gB_+.$

- For $\sigma \in \mathcal{C}$ define θ -distance $\delta^{\theta}(\sigma) := \delta(\sigma, \theta(\sigma))$.
- For $k \in K$ we have $\delta^{\theta}(k\sigma) = \delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta^{\theta}(\sigma)$.
- Define flip-flop system $C^{\theta} := \{ \sigma \in C \mid I(\delta^{\theta}(\sigma)) \text{ is maximal} \}.$

Let G be group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Assume $B_- = B_+^g$, for some $g \in G$.

• θ induces involutory automorphism of $C = G/B_+$:

 $\theta: G/B_+ \to G/B_+: xB_+ \mapsto \theta(xB_+)g = \theta(x)B_-g = \theta(x)gB_+.$

• For $\sigma \in \mathcal{C}$ define θ -distance $\delta^{\theta}(\sigma) := \delta(\sigma, \theta(\sigma))$.

- ► For $k \in K$ we have $\delta^{\theta}(k\sigma) = \delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta^{\theta}(\sigma)$.
- Define flip-flop system $C^{\theta} := \{ \sigma \in C \mid I(\delta^{\theta}(\sigma)) \text{ is maximal} \}.$

Let G be group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Assume $B_- = B_+^g$, for some $g \in G$.

• θ induces involutory automorphism of $C = G/B_+$:

 $\theta: G/B_+ \to G/B_+: xB_+ \mapsto \theta(xB_+)g = \theta(x)B_-g = \theta(x)gB_+.$

• For $\sigma \in \mathcal{C}$ define θ -distance $\delta^{\theta}(\sigma) := \delta(\sigma, \theta(\sigma))$.

- ► For $k \in K$ we have $\delta^{\theta}(k\sigma) = \delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta^{\theta}(\sigma)$.
- Define flip-flop system $C^{\theta} := \{ \sigma \in C \mid I(\delta^{\theta}(\sigma)) \text{ is maximal} \}.$

Let G be group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Assume $B_- = B_+^g$, for some $g \in G$.

• θ induces involutory automorphism of $C = G/B_+$:

 $\theta: G/B_+ \to G/B_+: xB_+ \mapsto \theta(xB_+)g = \theta(x)B_-g = \theta(x)gB_+.$

• For $\sigma \in \mathcal{C}$ define θ -distance $\delta^{\theta}(\sigma) := \delta(\sigma, \theta(\sigma))$.

- ► For $k \in K$ we have $\delta^{\theta}(k\sigma) = \delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta^{\theta}(\sigma)$.
- Define flip-flop system $C^{\theta} := \{ \sigma \in C \mid I(\delta^{\theta}(\sigma)) \text{ is maximal} \}.$

Let G be group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Assume $B_- = B_+^g$, for some $g \in G$.

• θ induces involutory automorphism of $C = G/B_+$:

 $\theta: G/B_+ \to G/B_+: xB_+ \mapsto \theta(xB_+)g = \theta(x)B_-g = \theta(x)gB_+.$

• For $\sigma \in \mathcal{C}$ define θ -distance $\delta^{\theta}(\sigma) := \delta(\sigma, \theta(\sigma))$.

- ► For $k \in K$ we have $\delta^{\theta}(k\sigma) = \delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta^{\theta}(\sigma)$.
- Define flip-flop system $C^{\theta} := \{ \sigma \in C \mid I(\delta^{\theta}(\sigma)) \text{ is maximal} \}.$

Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems

Applications

- > Phan type theorems (Bennett, Devillers, Gramlich, Hoffman, H., Mühlherr, Nickel, Shpectorov)
- ► New lattices in Kac-Moody groups (Gramlich, Mühlherr)
- Automorphisms of unitary forms of Kac-Moody groups (Kac, Peterson; Caprace; Gramlich, Mars)
- Representation theory (Devillers, Gramlich, Mühlherr, Witzel): Generalize Solomon-Tits theorem
- ▶ Generalized Iwasawa decomposition (De Medts, Gramlich, H.): *G* split conn. reductive \mathbb{F} -group / Kac-Moody group over \mathbb{F} . When does $G_{\mathbb{F}}$ admit a decomposition $G_{\mathbb{F}} = K_{\mathbb{F}}B_{\mathbb{F}}$ (where *K* is centralizer of an involution)? (Inspired by Helminck & Wang, 1993.)
- Finiteness properties (Caprace, Devillers, Gramlich, H., Mühlherr, Witzel)

• Let θ be an involutory almost-isometry of a building C.

- For $\sigma \in C$ the local flip-flop system C^{θ}_{σ} consists of simplices in lk σ for which the numerical θ -distance is maximal among all simplices *in the link*.
- ► Call (C, θ) a good pair if for all corank-2 simplices $\sigma \in C$, C_{σ}^{θ} is path connected and "allows direct ascent".

Theorem (Gramlich, H., Mühlherr 2008)

If (C, θ) is a good pair, then C^{θ} is path connected and pure, i.e., all its maximal simplices have equal type $J \subset S$. Moreover C^{θ} is residually connected, hence there exists an associated incidence geometry, the Phan geometry.

Example (Bennet, Shpectorov)

- Let θ be an involutory almost-isometry of a building C.
- ► For $\sigma \in C$ the local flip-flop system C^{θ}_{σ} consists of simplices in lk σ for which the numerical θ -distance is maximal among all simplices *in the link*.
- ► Call (C, θ) a good pair if for all corank-2 simplices $\sigma \in C$, C_{σ}^{θ} is path connected and "allows direct ascent".

Theorem (Gramlich, H., Mühlherr 2008)

If (C, θ) is a good pair, then C^{θ} is path connected and pure, i.e., all its maximal simplices have equal type $J \subset S$. Moreover C^{θ} is residually connected, hence there exists an associated incidence geometry, the Phan geometry.

Example (Bennet, Shpectorov)

- Let θ be an involutory almost-isometry of a building C.
- ► For $\sigma \in C$ the local flip-flop system C^{θ}_{σ} consists of simplices in lk σ for which the numerical θ -distance is maximal among all simplices *in the link*.
- ► Call (C, θ) a good pair if for all corank-2 simplices $\sigma \in C$, C_{σ}^{θ} is path connected and "allows direct ascent".

Theorem (Gramlich, H., Mühlherr 2008)

If (C, θ) is a good pair, then C^{θ} is path connected and pure, i.e., all its maximal simplices have equal type $J \subset S$. Moreover C^{θ} is residually connected, hence there exists an associated incidence geometry, the Phan geometry.

Example (Bennet, Shpectorov)

- Let θ be an involutory almost-isometry of a building C.
- ► For $\sigma \in C$ the local flip-flop system C^{θ}_{σ} consists of simplices in lk σ for which the numerical θ -distance is maximal among all simplices *in the link*.
- ► Call (C, θ) a good pair if for all corank-2 simplices $\sigma \in C$, C_{σ}^{θ} is path connected and "allows direct ascent".

Theorem (Gramlich, H., Mühlherr 2008)

If (C, θ) is a good pair, then C^{θ} is path connected and pure, i.e., all its maximal simplices have equal type $J \subset S$. Moreover C^{θ} is residually connected, hence there exists an associated incidence geometry, the Phan geometry.

Example (Bennet, Shpectorov)

- Let θ be an involutory almost-isometry of a building C.
- ► For $\sigma \in C$ the local flip-flop system C^{θ}_{σ} consists of simplices in lk σ for which the numerical θ -distance is maximal among all simplices *in the link*.
- ► Call (C, θ) a good pair if for all corank-2 simplices $\sigma \in C$, C_{σ}^{θ} is path connected and "allows direct ascent".

Theorem (Gramlich, H., Mühlherr 2008)

If (C, θ) is a good pair, then C^{θ} is path connected and pure, i.e., all its maximal simplices have equal type $J \subset S$. Moreover C^{θ} is residually connected, hence there exists an associated incidence geometry, the Phan geometry.

Example (Bennet, Shpectorov)

- Choose maximal simplices $\bar{\sigma}_i$ in C, $i \in \{1, 2\}$, such that $\sigma_i \subseteq \bar{\sigma}_i$.
- Fix a minimal gallery γ between $\bar{\sigma}_1$ and $\bar{\sigma}_2$ inside C.
- Consider C^θ_σ for corank-2 simplices σ in γ. Using our conditions on these, transform γ by "bypassing" chambers with low numerical θ-distance, gradually increasing the maximal numerical θ-distance of chambers in γ.
- Ultimately, num. θ -distance is non-decreasing along $\gamma \rightarrow$ actually constant.
- Show: Adjacent chambers with equal num. θ -distance have equal θ -distance $\Rightarrow \overline{\sigma}_1$ and $\overline{\sigma}_2$ have equal θ -distance $\Rightarrow \sigma_1$ and σ_2 have same type and C^{θ} is connected.
- \blacktriangleright Finally, show that residual connectedness is inherited from $\mathcal{C}.$

- Choose maximal simplices $\bar{\sigma}_i$ in C, $i \in \{1, 2\}$, such that $\sigma_i \subseteq \bar{\sigma}_i$.
- Fix a minimal gallery γ between $\bar{\sigma}_1$ and $\bar{\sigma}_2$ inside C.
- Consider C^θ_σ for corank-2 simplices σ in γ. Using our conditions on these, transform γ by "bypassing" chambers with low numerical θ-distance, gradually increasing the maximal numerical θ-distance of chambers in γ.
- Ultimately, num. θ -distance is non-decreasing along $\gamma \rightarrow$ actually constant.
- Show: Adjacent chambers with equal num. θ -distance have equal θ -distance $\Rightarrow \overline{\sigma}_1$ and $\overline{\sigma}_2$ have equal θ -distance $\Rightarrow \sigma_1$ and σ_2 have same type and C^{θ} is connected.
- \blacktriangleright Finally, show that residual connectedness is inherited from $\mathcal{C}.$

- Choose maximal simplices $\bar{\sigma}_i$ in C, $i \in \{1, 2\}$, such that $\sigma_i \subseteq \bar{\sigma}_i$.
- Fix a minimal gallery γ between $\bar{\sigma}_1$ and $\bar{\sigma}_2$ inside C.
- Consider C^θ_σ for corank-2 simplices σ in γ. Using our conditions on these, transform γ by "bypassing" chambers with low numerical θ-distance, gradually increasing the maximal numerical θ-distance of chambers in γ.
- ▶ Ultimately, num. θ -distance is non-decreasing along $\gamma \rightarrow$ actually constant.
- Show: Adjacent chambers with equal num. θ -distance have equal θ -distance $\Rightarrow \overline{\sigma}_1$ and $\overline{\sigma}_2$ have equal θ -distance $\Rightarrow \sigma_1$ and σ_2 have same type and C^{θ} is connected
- \blacktriangleright Finally, show that residual connectedness is inherited from $\mathcal{C}.$

- Choose maximal simplices $\bar{\sigma}_i$ in C, $i \in \{1, 2\}$, such that $\sigma_i \subseteq \bar{\sigma}_i$.
- Fix a minimal gallery γ between $\bar{\sigma}_1$ and $\bar{\sigma}_2$ inside C.
- Consider C^θ_σ for corank-2 simplices σ in γ. Using our conditions on these, transform γ by "bypassing" chambers with low numerical θ-distance, gradually increasing the maximal numerical θ-distance of chambers in γ.
- ▶ Ultimately, num. θ -distance is non-decreasing along $\gamma \rightarrow$ actually constant.
- Show: Adjacent chambers with equal num. θ -distance have equal θ -distance $\Rightarrow \overline{\sigma}_1$ and $\overline{\sigma}_2$ have equal θ -distance
 - $\implies \sigma_1$ and σ_2 have same type and $\mathcal{C}^ heta$ is connected.
- \blacktriangleright Finally, show that residual connectedness is inherited from $\mathcal{C}.$

- Choose maximal simplices $\bar{\sigma}_i$ in C, $i \in \{1, 2\}$, such that $\sigma_i \subseteq \bar{\sigma}_i$.
- Fix a minimal gallery γ between $\bar{\sigma}_1$ and $\bar{\sigma}_2$ inside C.
- Consider C^θ_σ for corank-2 simplices σ in γ. Using our conditions on these, transform γ by "bypassing" chambers with low numerical θ-distance, gradually increasing the maximal numerical θ-distance of chambers in γ.
- ▶ Ultimately, num. θ -distance is non-decreasing along $\gamma \rightarrow$ actually constant.
- Show: Adjacent chambers with equal num. θ -distance have equal θ -distance $\Rightarrow \bar{\sigma}_1$ and $\bar{\sigma}_2$ have equal θ -distance
 - $\implies \sigma_1 \text{ and } \sigma_2 \text{ have same type and } \mathcal{C}^{\theta} \text{ is connected.}$
- \blacktriangleright Finally, show that residual connectedness is inherited from $\mathcal{C}.$

- Choose maximal simplices $\bar{\sigma}_i$ in C, $i \in \{1, 2\}$, such that $\sigma_i \subseteq \bar{\sigma}_i$.
- Fix a minimal gallery γ between $\bar{\sigma}_1$ and $\bar{\sigma}_2$ inside C.
- Consider C^θ_σ for corank-2 simplices σ in γ. Using our conditions on these, transform γ by "bypassing" chambers with low numerical θ-distance, gradually increasing the maximal numerical θ-distance of chambers in γ.
- ▶ Ultimately, num. θ -distance is non-decreasing along $\gamma \rightarrow$ actually constant.
- Show: Adjacent chambers with equal num. θ-distance have equal θ-distance ⇒ σ
 ₁ and σ
 ₂ have equal θ-distance ⇒ σ₁ and σ₂ have same type and C^θ is connected.
- \blacktriangleright Finally, show that residual connectedness is inherited from $\mathcal{C}.$

Finding good pairs

Theorem (H., van Maldeghem 2009)

Let G be a group with 2-spherical \mathbb{F} -locally split root group datum, where char $\mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then $(\mathcal{C}(G), \theta)$ is a good pair for any (twisted) Chevalley involution θ of G.

Proof by studying local case, i.e., involutions and polarities of Moufang planes, quadrangles and hexagons. Determine: R_{θ} connected? Direct ascent into R_{θ} possible?

Corollary

Let G be a group with 2-spherical \mathbb{F} -locally split root group datum, where char $\mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then \mathcal{C}^{θ} is pure and residually connected, hence geometric, for any (twisted) Chevalley involution θ of G.

Finding good pairs

Theorem (H., van Maldeghem 2009)

Let G be a group with 2-spherical \mathbb{F} -locally split root group datum, where char $\mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then $(\mathcal{C}(G), \theta)$ is a good pair for any (twisted) Chevalley involution θ of G.

Proof by studying local case, i.e., involutions and polarities of Moufang planes, quadrangles and hexagons. Determine: R_{θ} connected? Direct ascent into R_{θ} possible?

Corollary

Let G be a group with 2-spherical \mathbb{F} -locally split root group datum, where char $\mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then \mathcal{C}^{θ} is pure and residually connected, hence geometric, for any (twisted) Chevalley involution θ of G.

Finding good pairs

Theorem (H., van Maldeghem 2009)

Let G be a group with 2-spherical \mathbb{F} -locally split root group datum, where char $\mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then $(\mathcal{C}(G), \theta)$ is a good pair for any (twisted) Chevalley involution θ of G.

Proof by studying local case, i.e., involutions and polarities of Moufang planes, quadrangles and hexagons. Determine: R_{θ} connected? Direct ascent into R_{θ} possible?

Corollary

Let G be a group with 2-spherical \mathbb{F} -locally split root group datum, where char $\mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then \mathcal{C}^{θ} is pure and residually connected, hence geometric, for any (twisted) Chevalley involution θ of G.

In geometric group theory, so-called finiteness properties of groups are of high interest. (Examples: finite generation and finite presentation.)

Theorem (Gramlich, H., and Mühlherr, 2009)

- ▶ Constant bound on *q*, does not depend on the rank of *G*.
- ▶ Can be extended to even *q* for properly twisted Chevalley involutions.
- ▶ If G is not 2-spherical, then K may not be finitely generated.

In geometric group theory, so-called finiteness properties of groups are of high interest. (Examples: finite generation and finite presentation.)

Theorem (Gramlich, H., and Mühlherr, 2009)

- Constant bound on q, does not depend on the rank of G.
- Can be extended to even *q* for properly twisted Chevalley involutions.
- ▶ If *G* is not 2-spherical, then *K* may not be finitely generated.

In geometric group theory, so-called finiteness properties of groups are of high interest. (Examples: finite generation and finite presentation.)

Theorem (Gramlich, H., and Mühlherr, 2009)

- Constant bound on q, does not depend on the rank of G.
- Can be extended to even q for properly twisted Chevalley involutions.
- ▶ If *G* is not 2-spherical, then *K* may not be finitely generated.

In geometric group theory, so-called finiteness properties of groups are of high interest. (Examples: finite generation and finite presentation.)

Theorem (Gramlich, H., and Mühlherr, 2009)

- Constant bound on q, does not depend on the rank of G.
- Can be extended to even *q* for properly twisted Chevalley involutions.
- ▶ If *G* is not 2-spherical, then *K* may not be finitely generated.

In geometric group theory, so-called finiteness properties of groups are of high interest. (Examples: finite generation and finite presentation.)

Theorem (Gramlich, H., and Mühlherr, 2009)

- Constant bound on q, does not depend on the rank of G.
- Can be extended to even *q* for properly twisted Chevalley involutions.
- If G is not 2-spherical, then K may not be finitely generated.

Recall that \mathcal{C}^{θ} is a subcomplex of the building Δ and K acts on it.

- 1. G is \mathbb{F}_q -locally split and q odd $\implies C^{\theta}$ is pure and path connected.
- 2. Denote by $\overline{C^{\theta}}$ union of C^{θ} with stars in C of all maximal simplices of C^{θ} .
- 3. K acts on maximal simplices in $\overline{C^{\theta}}$. Assume there is only a single K-orbit.
- 4. C^{θ} is connected $\iff \overline{C^{\theta}}$ is connected. Pick a maximal simplex $\sigma_0 \in \overline{C^{\theta}}$:

 $K = \langle Stab_K(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \rangle.$

- 5. Caprace and Mühlherr: Stabilizers in K of corank-1 simplices of C are finite.
- 6. In general, show that there are only finitely many K-orbits on $\overline{C^{\theta}}$: Identify them bijectively with orbits on a maximal θ -split torus T of G acting on itself via $(t_1, t_2) \mapsto \theta(t_2)^{-1} t_1 t_2$. But here maximal tori are finite.
- 7. From this we can conclude the general result with a standard argument.

Recall that C^{θ} is a subcomplex of the building Δ and K acts on it.

- 1. G is \mathbb{F}_q -locally split and q odd $\implies \mathcal{C}^{\theta}$ is pure and path connected.
- 2. Denote by $\overline{C^{\theta}}$ union of C^{θ} with stars in C of all maximal simplices of C^{θ} .
- 3. K acts on maximal simplices in $\overline{C^{\theta}}$. Assume there is only a single K-orbit.
- 4. C^{θ} is connected $\iff \overline{C^{\theta}}$ is connected. Pick a maximal simplex $\sigma_0 \in \overline{C^{\theta}}$:

 $K = \langle Stab_K(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \rangle.$

- 5. Caprace and Mühlherr: Stabilizers in K of corank-1 simplices of C are finite.
- 6. In general, show that there are only finitely many K-orbits on $\overline{C^{\theta}}$: Identify them bijectively with orbits on a maximal θ -split torus T of G acting on itself via $(t_1, t_2) \mapsto \theta(t_2)^{-1} t_1 t_2$. But here maximal tori are finite.
- 7. From this we can conclude the general result with a standard argument.

Recall that C^{θ} is a subcomplex of the building Δ and K acts on it.

- 1. G is \mathbb{F}_q -locally split and q odd $\implies C^{\theta}$ is pure and path connected.
- 2. Denote by $\overline{C^{\theta}}$ union of C^{θ} with stars in C of all maximal simplices of C^{θ} .
- 3. K acts on maximal simplices in $\overline{C^{\theta}}$. Assume there is only a single K-orbit.
- 4. C^{θ} is connected $\iff \overline{C^{\theta}}$ is connected. Pick a maximal simplex $\sigma_0 \in \overline{C^{\theta}}$:

 $K = \langle Stab_K(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \rangle.$

- 5. Caprace and Mühlherr: Stabilizers in K of corank-1 simplices of C are finite.
- 6. In general, show that there are only finitely many K-orbits on $\overline{C^{\theta}}$: Identify them bijectively with orbits on a maximal θ -split torus T of G acting on itself via $(t_1, t_2) \mapsto \theta(t_2)^{-1} t_1 t_2$. But here maximal tori are finite.
- 7. From this we can conclude the general result with a standard argument.

Recall that C^{θ} is a subcomplex of the building Δ and K acts on it.

- 1. G is \mathbb{F}_q -locally split and q odd $\implies \mathcal{C}^{\theta}$ is pure and path connected.
- 2. Denote by $\overline{C^{\theta}}$ union of C^{θ} with stars in C of all maximal simplices of C^{θ} .
- 3. K acts on maximal simplices in $\overline{C^{\theta}}$. Assume there is only a single K-orbit.
- 4. C^{θ} is connected $\iff \overline{C^{\theta}}$ is connected. Pick a maximal simplex $\sigma_0 \in \overline{C^{\theta}}$:

$$\mathcal{K} = \langle Stab_{\mathcal{K}}(\sigma) \mid \sigma \text{ is a facet of } \sigma_0
angle.$$

- 5. Caprace and Mühlherr: Stabilizers in K of corank-1 simplices of C are finite.
- 6. In general, show that there are only finitely many K-orbits on $\overline{C^{\theta}}$: Identify them bijectively with orbits on a maximal θ -split torus T of G acting on itself via $(t_1, t_2) \mapsto \theta(t_2)^{-1} t_1 t_2$. But here maximal tori are finite.
- 7. From this we can conclude the general result with a standard argument.

Recall that C^{θ} is a subcomplex of the building Δ and K acts on it.

- 1. G is \mathbb{F}_q -locally split and q odd $\implies C^{\theta}$ is pure and path connected.
- 2. Denote by $\overline{C^{\theta}}$ union of C^{θ} with stars in C of all maximal simplices of C^{θ} .
- 3. K acts on maximal simplices in $\overline{C^{\theta}}$. Assume there is only a single K-orbit.
- 4. C^{θ} is connected $\iff \overline{C^{\theta}}$ is connected. Pick a maximal simplex $\sigma_0 \in \overline{C^{\theta}}$:

 $\mathcal{K} = \langle Stab_{\mathcal{K}}(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \rangle$.

- 5. Caprace and Mühlherr: Stabilizers in K of corank-1 simplices of C are finite.
- 6. In general, show that there are only finitely many K-orbits on C^θ: Identify them bijectively with orbits on a maximal θ-split torus T of G acting on itself via (t₁, t₂) → θ(t₂)⁻¹t₁t₂. But here maximal tori are finite.
- 7. From this we can conclude the general result with a standard argument.

Recall that \mathcal{C}^{θ} is a subcomplex of the building Δ and K acts on it.

- 1. G is \mathbb{F}_q -locally split and q odd $\implies \mathcal{C}^{\theta}$ is pure and path connected.
- 2. Denote by $\overline{C^{\theta}}$ union of C^{θ} with stars in C of all maximal simplices of C^{θ} .
- 3. K acts on maximal simplices in $\overline{C^{\theta}}$. Assume there is only a single K-orbit.
- 4. C^{θ} is connected $\iff \overline{C^{\theta}}$ is connected. Pick a maximal simplex $\sigma_0 \in \overline{C^{\theta}}$:

 $\mathcal{K} = \langle Stab_{\mathcal{K}}(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \rangle$.

- 5. Caprace and Mühlherr: Stabilizers in K of corank-1 simplices of C are finite.
- In general, show that there are only finitely many K-orbits on C^θ: Identify them bijectively with orbits on a maximal θ-split torus T of G acting on itself via (t₁, t₂) → θ(t₂)⁻¹t₁t₂. But here maximal tori are finite.

7. From this we can conclude the general result with a standard argument.

Recall that \mathcal{C}^{θ} is a subcomplex of the building Δ and K acts on it.

- 1. G is \mathbb{F}_q -locally split and q odd $\implies \mathcal{C}^{\theta}$ is pure and path connected.
- 2. Denote by $\overline{C^{\theta}}$ union of C^{θ} with stars in C of all maximal simplices of C^{θ} .
- 3. K acts on maximal simplices in $\overline{C^{\theta}}$. Assume there is only a single K-orbit.
- 4. C^{θ} is connected $\iff \overline{C^{\theta}}$ is connected. Pick a maximal simplex $\sigma_0 \in \overline{C^{\theta}}$:

 $\mathcal{K} = \langle Stab_{\mathcal{K}}(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \rangle$.

- 5. Caprace and Mühlherr: Stabilizers in K of corank-1 simplices of C are finite.
- In general, show that there are only finitely many K-orbits on C^θ: Identify them bijectively with orbits on a maximal θ-split torus T of G acting on itself via (t₁, t₂) → θ(t₂)⁻¹t₁t₂. But here maximal tori are finite.
- 7. From this we can conclude the general result with a standard argument.
References

Alice Devillers and Bernhard Mühlherr. On the simple connectedness of certain subsets of buildings. Forum Math., 19:955-970, 2007. Aloysius G. Helminck and Shu Ping Wang. On rationality properties of involutions of reductive groups. Adv. Math., 99:26-96, 1993. Max Horn. Involutions of Kac-Moody groups. PhD thesis, TU Darmstadt, 2008. \rightarrow De Medts-Gramlich-H, plus Gramlich-H,-Mühlherr: submitted: H.: Oberwolfach report: H.-Van Maldeghem: in preparation Ralf Gramlich and Andreas Mars.

Isomorphisms of unitary forms of Kac-Moody groups over finite fields *J. Algebra*, 322:554–561, 2009.

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K. We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is *not* 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- ▶ Let *T* be a tree residue of the building. Then *G*.*T* is a simplicial tree (Dymara/Januszkiewicz).
- The key insight is the following: The action of the lattice K on the simplicial tree G.T is minimal but ...
- ▶ ... there are infinitely many *K*-orbits on *G*.*T*.
- ▶ It follows (Bass) that the lattice K cannot be finitely generated.

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K.

We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- ▶ Let T be a tree residue of the building. Then G.T is a simplicial tree (Dymara/Januszkiewicz).
- ▶ The key insight is the following: The action of the lattice *K* on the simplicial tree *G*.*T* is minimal but . . .
- ▶ ... there are infinitely many *K*-orbits on *G*.*T*.
- ▶ It follows (Bass) that the lattice *K* cannot be finitely generated.

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K.

We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- ▶ Let T be a tree residue of the building. Then G.T is a simplicial tree (Dymara/Januszkiewicz).
- ► The key insight is the following: The action of the lattice *K* on the simplicial tree *G*.*T* is minimal but . . .
- ▶ ... there are infinitely many *K*-orbits on *G*.*T*.
- ▶ It follows (Bass) that the lattice *K* cannot be finitely generated.

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K.

We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- ▶ Let T be a tree residue of the building. Then G.T is a simplicial tree (Dymara/Januszkiewicz).
- ► The key insight is the following: The action of the lattice *K* on the simplicial tree *G*.*T* is minimal but . . .
- ▶ ... there are infinitely many *K*-orbits on *G*.*T*.
- ▶ It follows (Bass) that the lattice *K* cannot be finitely generated.

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K.

We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- ▶ Let T be a tree residue of the building. Then G.T is a simplicial tree (Dymara/Januszkiewicz).
- ► The key insight is the following: The action of the lattice *K* on the simplicial tree *G*.*T* is minimal but . . .
- ▶ ... there are infinitely many *K*-orbits on *G*.*T*.
- ▶ It follows (Bass) that the lattice K cannot be finitely generated.

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K.

We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- ▶ Let T be a tree residue of the building. Then G.T is a simplicial tree (Dymara/Januszkiewicz).
- ► The key insight is the following: The action of the lattice *K* on the simplicial tree *G*.*T* is minimal but . . .
- ▶ ... there are infinitely many *K*-orbits on *G*.*T*.
- ▶ It follows (Bass) that the lattice K cannot be finitely generated.

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K.

We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- ▶ Let T be a tree residue of the building. Then G.T is a simplicial tree (Dymara/Januszkiewicz).
- ► The key insight is the following: The action of the lattice *K* on the simplicial tree *G*.*T* is minimal but . . .
- ▶ ... there are infinitely many *K*-orbits on *G*.*T*.
- ▶ It follows (Bass) that the lattice K cannot be finitely generated.