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Quotient Algorithms

A quotient algorithm takes a group G (e.g. given via a
finite presentation) and computes a quotient H.

An effective quotient map π : G → H is also computed,
i.e., allowing computation of images and preimages.

H is ideally more tractable than G (e.g. finite or
nilpotent), yet should share interesting features of G .

Development and implementation of quotients methods
for finitely presented groups have a long history.
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Types of Quotient Algorithms

Let G be a finitely presented group. Various quotient
algorithms exist for such groups. They allow computing . . .

maximal abelian quotients, i.e., G/G ′

finite p-group quotients (Newman and O’Brien)

finite solvable quotients (Niemeyer; Brückner and Plesken)

nilpotent quotients (Nickel)

polycyclic quotients (Lo; most general in this sequence)

⇔ H is a polycyclic group
⇔ H is solvable and all subgroups are finitely generated
⇔ ∃ series H = H1 � . . .� Hn � 1 with Hi/Hi+1 cyclic
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Our contribution

We implemented a polycyclic quotient algorithm for
L-presented groups, partially based on the work by Eddie Lo.

What is new?

Extended input: L-presented, generalizing f.p.

Flexibility: can compute polycylic, nilpotent, and
“intermediate” quotients (note: a nilpotent quotient
algorithm for L-presented due to Bartholdi, Eick and
Hartung already exists)

Effectivity: new ideas to improve algorithm

Moreover, it can be used everywhere GAP 4 runs. In contrast,
Lo’s algorithm is difficult to use on modern computers
(compilation issues, relies on GAP 3).
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L-presentations

Let X be a finite set of abstract generators, let F be the free
group on X . Let R and Q be finite subsets of F and φ a finite
set of endomorphisms of F . Then

〈X | Q | φ | R〉

is called a (finite) L-presentation.

Denote by φ∗ the monoid generated by φ. Then the finite
L-presentation defines a group F/K , where

K = 〈Q ∪
⋃

σ∈φ∗

σ(R)〉F � F .

F/K is a (finitely) L-presented group.
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Examples of L-presented groups

Every finitely presented group 〈X | S〉 is finitely
L-presented, e.g. as 〈X | S | ∅ | ∅〉 or as 〈X | ∅ | ∅ | S〉.

There are interesting groups which are not finitely
presented but admit finite L-presentations.

The Grigorchuk group arose as a counterexample to the
Burnside problem and has very interesting properties.
. . . 2-group, amenable, automatic, intermediate growth, just infinite, residually finite. . .

The Basilica group is an example with easy description.
. . . amenable, automatic, exponential growth, just non-solvable . . .〈

a, b | ∅ | (a, b) 7→ (b2, a) | [a, b−1ab]
〉
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Quotient algorithm: Overview

Steps of polycyclic quotient algorithm:

Input: group G , positive integer c

Output: polycyclic pres. of G/G (c) if it exists, or an error
(recall G (0) := G , G (i+1) := [G (i),G (i)])

Also computes effective epimorphism ψc : G → G/G (c).

Use an inductive approach:

Start with the trivial epimorphism ψ0 : G → 1 = G/G (0).

Repeatedly run extension algorithm: Extend effective
epimorphism ψi : G → G/G (i), to ψi+1 : G → G/G (i+1)

and determine polycyclic presentation of G/G (i+1), if any,
or an error.
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Gröbner bases
in group rings

Two examples

Extension algorithm: Overview

Input:

An L-presented G and a polycyclic presented H;

An effective epimorphism ψ : G → H with kernel N;

A description for a subgroup U � H.

Set M := [ψ−1(U),N].
U = 1 =⇒ M = N ′ ; polycyclic quotients.
U = H =⇒ M = [G ,N] ; nilpotent quotients.
From now on U = 1 and M = N ′.

Output:

Check whether G/M is polycyclic, and, if so, then

an effective epimorphism ν : G → K with kernel M and
polycyclic presentation for K .
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Extension algorithm: Overview (cont.)

N H = G/N

M

G

K = G/M
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.......
................

Note that U � H and M := [ψ−1(U), N ], thus N � ≤ M ≤ [G, N ] and M � N . Also
N/M is abelian, in fact is a G-module and an H-module, so K is an extension of H by
N/M .

G

N/M

K = G/M

H = G/N................................................................................................................................................. .................................................................................................................................................................. .................
ψ............

............
............
............
............
............
............
............
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............
............
............
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................
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........
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G

N/M K = G/M H = G/N

..................................................................................................................................................................... ........
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....................................................................................................................................................................
......
.........
.......
.

ψ

.................................................................................................................................................................
....
............

..................................................................................................................................................................
.......
.

...........
......

ν


.......
......

1

N/M is a (right) ZH-module.

K is an extension of N/M by H.

Steps:

1 Compute finite ZH-module presentation for N/M.

2 Check whether N/M has finite Z-rank (⇔ K is
polycyclic), and, if so, then

3 determine generators for N/M as abelian group;
extend N/M by H to K and ψ to ν.
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Extension algorithm: Overview (cont.)
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Note that U � H and M := [ψ−1(U), N ], thus N � ≤ M ≤ [G, N ] and M � N . Also
N/M is abelian, in fact is a G-module and an H-module, so K is an extension of H by
N/M .
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N/M is a (right) ZH-module.

K is an extension of N/M by H.

Steps:

1 Compute finite ZH-module presentation for N/M.

2 Check whether N/M has finite Z-rank (⇔ K is
polycyclic), and, if so, then

3 determine generators for N/M as abelian group;
extend N/M by H to K and ψ to ν.
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Extension algorithm: Overview (cont.)
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N/M is a (right) ZH-module.

K is an extension of N/M by H.

Steps:

1 Compute finite ZH-module presentation for N/M.

2 Check whether N/M has finite Z-rank (⇔ K is
polycyclic), and, if so, then

3 determine generators for N/M as abelian group;
extend N/M by H to K and ψ to ν.
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N/M is a (right) ZH-module.

K is an extension of N/M by H.

Steps:

1 Compute finite ZH-module presentation for N/M.

2 Check whether N/M has finite Z-rank (⇔ K is
polycyclic), and, if so, then

3 determine generators for N/M as abelian group;
extend N/M by H to K and ψ to ν.
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Extension algorithm: Step 1

Step 1: Compute a finite ZH-module presentation for N/M.

N/M ∼= V /W for a free ZH-module V of finite rank and
a submodule W .

W is determined by the relations of G , plus ψ : G → H.

Problem: Infinitely many relators: Q ∪⋃σ∈φ∗ σ(R).

But we can filter the relators by length of σ, this yields an
ascending chain of submodules W1 ⊆W2 ⊆ . . . ⊆W .

ZH-modules are Noetherian (as H is polycyclic), hence
∃n ∈ N, such that Wn = Wn+1 = Wn+2 = . . . = W .
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Extension algorithm: Steps 2 & 3

Step 2: Is N/M finitely generated as abelian group?

Compute Gröbner basis of W , use this to determine
Z-rank of V /W .

For this, adapt methods by Lo and Madlener-Reinert.

Step 3: Finding group generators for N/M ∼= V /W and
extending N/M by H to K and ψ to ν.

Generators can be extracted from the Gröbner basis.

Rest is tedious, but doable (linear algebra over integers).
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Compute Gröbner basis of W , use this to determine
Z-rank of V /W .

For this, adapt methods by Lo and Madlener-Reinert.

Step 3: Finding group generators for N/M ∼= V /W and
extending N/M by H to K and ψ to ν.

Generators can be extracted from the Gröbner basis.
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Overview

1 Quotient algorithms

2 L-presented groups

3 Polycyclic quotient algorithm

4 Gröbner bases in group rings

5 Two examples
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Gröbner bases
in group rings

Two examples

Towards Gröbner bases in group rings

Group ring elements of KG are similar to polynomials.
Which properties are crucial for Gröbner bases in K[x1, . . . , xn]?

(P1) Divisibility of monomials. ; Well partial order � on group
elements.

(P2) Finite monomial set have a unique least common multiple
; finite subsets of G with a common upper bound have a
unique least common upper bound

(P3) A total order ≤ linearizaing � (necessarily a well-order).

(P4) g � xg and f ≤ g =⇒ xf ≤ xg .

Allows reduction, syzygies, finiteness of Gröbner bases . . .
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Gröbner bases in group rings II

How to compute a Gröbner basis? Adapt Buchberger’s
algorithm!

But watch out: Lead monomials can change unexpectedly
(lm(x f ) 6= x lm(f ))! ; need to introduce additional
“polynomials” during algorithm.

One can adapt various improvements from the polynomial
case, e.g. Gebauer-Möller criterion.

Integer coefficients ; complicates things further. /
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Two examples

G :=
〈
a, b | a4, (a−2b)2, (babab)−1aba

〉
H :=

〈
a, b | ∅ | (a, b) 7→ (b2, a) | [a, b−1ab]

〉
(Basilica group)

(LC) ; lower central series: abelian invariants of γ(i)/γ(i+1)

(D) ; derived serives: abelian invariants of G (i)/G (i+1)

G H

Step (LC) (D) (LC) (D)

1 (2,4) (2,4) (0,0) (0,0)
2 (2) (0,0) (0) (0,0,0)
3 (2) () (4) (2,2,0,0,0,0,0,0,0,0)
4 (2) () (4) ?
5 (2) () (4,4) ?
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G : An f.p. group; (LC): lower central series; (D): derived series.

Reaches the maximal solvable quotient of G after 3 steps along
the derived series: it is polycyclic of Hirsch length 2. Along the
lower central series, we will never reach the maximal solvable
quotient, since all nilpotent quotients of G are finite.

G H

Step (LC) (D) (LC) (D)

1 (2,4) (2,4) (0,0) (0,0)
2 (2) (0,0) (0) (0,0,0)
3 (2) () (4) (2,2,0,0,0,0,0,0,0,0)
4 (2) () (4) ?
5 (2) () (4,4) ?
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H: Basilica group; (LC): lower central series; (D): derived series.

We see that H/H(3) is polycyclic of Hirsch length 13.
On the other hand, H/γ48(H) has been determined by Bartholdi-
Eick-Hartung: this has only Hirsch length 3.

G H

Step (LC) (D) (LC) (D)

1 (2,4) (2,4) (0,0) (0,0)
2 (2) (0,0) (0) (0,0,0)
3 (2) () (4) (2,2,0,0,0,0,0,0,0,0)
4 (2) () (4) ?
5 (2) () (4,4) ?
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Outlook

Many improvements and optimizations planned, especially
for Gröbner basis computations:

Adapting improvements from F4 algorithm. (And F5?)

Exploit ideas from algorithms for Z-lattice computations,
such as Hermite-Normal-form algorithms, LLL-algorithm.

Take advantage of parallelization.

We will make our implementation available as a GAP
share package in the future.
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Gröbner bases in polynomial rings

Which properties are crucial Gröbner bases in K[x1, . . . , xn]?

(P1) Divisibility of monomials ; a well partial order �.

(P2) Any finite monomial set has a unique least common
multiple wrt. this partial order.

(P3) A total order ≤ on the monomials which is a linearization
of � ; necessarily is a well-order.

(P4) If f , g , x are monomials, then f ≤ g implies xf ≤ xg .

P4 ; if lm(x f ) = x lm(f )

P1+P4 ; reduction

P1+P3 ; finiteness of Gröbner bases
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Towards Gröbner bases in group rings

Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order � and a total order ≤ is a
reduction group if

(R1) � is a well partial order,

(R2) finite subsets of G with a common upper bound have a
unique least common upper bound,

(R3) ≤ extends � linearly, and

(R4) for all x , f , g ∈ G , if g � xg and f ≤ g then xf ≤ xg .

R4 ; if g � xg then lm(x g) = x lm(g)

R1+R4 ; reduction

R1+R3 ; finiteness of Gröbner bases

Polycyclic groups are reduction groups!
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Polycyclic groups are reduction groups!



Polycyclic
quotients of
L-presented

groups

Max Horn

Quotient
algorithms

L-presented
groups

Polycyclic
quotient
algorithm
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Gröbner bases in group rings

Definition

Let I be a left-ideal of a group ring. A Gröbner basis of I is a
finite subset B ⊂ I such that for any non-zero f ∈ I there is
b ∈ B such that lm(b) � lm(f ).

Theorem

Let B be a Gröbner basis of I . Then f ∈ KG is contained in I
if and only if f reduces to zero modulo B.

Corollary

Let B be a Gröbner basis of I . Then I is generated by B.



Polycyclic
quotients of
L-presented

groups

Max Horn

Quotient
algorithms

L-presented
groups

Polycyclic
quotient
algorithm
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Let B be a Gröbner basis of I . Then I is generated by B.



Polycyclic
quotients of
L-presented

groups

Max Horn

Quotient
algorithms

L-presented
groups

Polycyclic
quotient
algorithm
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Gröbner bases in group rings II

How to compute a Gröbner basis? Adapt Buchberger’s
algorithm!

But watch out: Lead monomials can change unexpectedly
(lm(x f ) 6= x lm(f ))! ; need to introduce additional
“polynomials” during algorithm.

One can adapt various improvements from the polynomial
case, e.g. Gebauer-Möller criterion.

So far, coefficients were from a field. But we need integer
coefficients ; complicates things further. /
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How to compute a Gröbner basis? Adapt Buchberger’s
algorithm!

But watch out: Lead monomials can change unexpectedly
(lm(x f ) 6= x lm(f ))! ; need to introduce additional
“polynomials” during algorithm.

One can adapt various improvements from the polynomial
case, e.g. Gebauer-Möller criterion.
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