# Computing polycyclic quotients of finitely (*L*-)presented groups via Gröbner bases

Max Horn

#### joint work with Bettina Eick

Technische Universität Braunschweig

ICMS 2010, Kobe, Japan



< □ > < @ > < 注 > < 注 > ... 注

#### Overview

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Quotient algorithms

2 *L*-presented groups

Olycyclic quotient algorithm

Gröbner bases in group rings



#### Overview

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

5 Two examples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Polycyclic quotients of *L*-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- A quotient algorithm takes a group G (e.g. given via a finite presentation) and computes a quotient H.
- An *effective* quotient map π : G → H is also computed, i.e., allowing computation of images and preimages.
- *H* is ideally more tractable than *G* (e.g. finite or nilpotent), yet should share interesting features of *G*.
- Development and implementation of quotients methods for finitely presented groups have a long history.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Polycyclic quotients of *L*-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

- Polycyclic quotient algorithm
- Gröbner bases in group rings

Two examples

- A quotient algorithm takes a group G (e.g. given via a finite presentation) and computes a quotient H.
- An *effective* quotient map  $\pi : G \to H$  is also computed, i.e., allowing computation of images and preimages.
- *H* is ideally more tractable than *G* (e.g. finite or nilpotent), yet should share interesting features of *G*.
- Development and implementation of quotients methods for finitely presented groups have a long history.

Polycyclic quotients of *L*-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- A quotient algorithm takes a group G (e.g. given via a finite presentation) and computes a quotient H.
- An *effective* quotient map π : G → H is also computed, i.e., allowing computation of images and preimages.
- *H* is ideally more tractable than *G* (e.g. finite or nilpotent), yet should share interesting features of *G*.
- Development and implementation of quotients methods for finitely presented groups have a long history.

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- A quotient algorithm takes a group G (e.g. given via a finite presentation) and computes a quotient H.
- An *effective* quotient map π : G → H is also computed, i.e., allowing computation of images and preimages.
- *H* is ideally more tractable than *G* (e.g. finite or nilpotent), yet should share interesting features of *G*.
- Development and implementation of quotients methods for finitely presented groups have a long history.

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

• maximal abelian quotients, i.e., G/G'

• finite *p*-group quotients (Newman and O'Brien)

- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)

H is a polycyclic group

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

• maximal abelian quotients, i.e., G/G'

finite p-group quotients (Newman and O'Brien)

- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)

H is a polycyclic group

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

• maximal abelian quotients, i.e., G/G'

- finite *p*-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

H is a polycyclic group

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

• maximal abelian quotients, i.e., G/G'

- finite *p*-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)

H is a polycyclic group

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

• maximal abelian quotients, i.e., G/G'

- finite *p*-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)

H is a polycyclic group

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G/G'
- finite *p*-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)

H is a polycyclic group

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G/G'
- finite *p*-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)

#### H is a polycyclic group

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G/G'
- finite *p*-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

H is a polycyclic group

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G/G'
- finite *p*-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)

H is a polycyclic group

 $\Leftrightarrow \textit{H} \text{ is solvable and all subgroups are finitely generated}$ 

 $\Leftrightarrow \exists$  series  $H = H_1 \triangleright \ldots \triangleright H_n \triangleright 1$  with  $H_i/H_{i+1}$  cyclic

## Our contribution

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

- Polycyclic quotient algorithm
- Gröbner bases in group rings

Two examples

## We implemented a polycyclic quotient algorithm for *L*-presented groups, partially based on the work by Eddie Lo.

What is new?

- Extended input: *L*-presented, generalizing f.p.
- Flexibility: can compute polycylic, nilpotent, and "intermediate" quotients (note: a nilpotent quotient algorithm for *L*-presented due to Bartholdi, Eick and Hartung already exists)
- Effectivity: new ideas to improve algorithm

Moreover, it can be used everywhere GAP 4 runs. In contrast, Lo's algorithm is difficult to use on modern computers (compilation issues, relies on GAP 3).

## Our contribution

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

We implemented a polycyclic quotient algorithm for *L*-presented groups, partially based on the work by Eddie Lo.

What is new?

- Extended input: *L*-presented, generalizing f.p.
- Flexibility: can compute polycylic, nilpotent, and "intermediate" quotients (note: a nilpotent quotient algorithm for *L*-presented due to Bartholdi, Eick and Hartung already exists)
- Effectivity: new ideas to improve algorithm

Moreover, it can be used everywhere GAP 4 runs. In contrast, Lo's algorithm is difficult to use on modern computers (compilation issues, relies on GAP 3).

## Our contribution

Polycyclic quotients of L-presented groups

Max Horn

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

We implemented a polycyclic quotient algorithm for *L*-presented groups, partially based on the work by Eddie Lo.

What is new?

- Extended input: *L*-presented, generalizing f.p.
- Flexibility: can compute polycylic, nilpotent, and "intermediate" quotients (note: a nilpotent quotient algorithm for *L*-presented due to Bartholdi, Eick and Hartung already exists)
- Effectivity: new ideas to improve algorithm

Moreover, it can be used everywhere GAP 4 runs. In contrast, Lo's algorithm is difficult to use on modern computers (compilation issues, relies on GAP 3).

#### Overview

Polycyclic quotients of *L*-presented groups

Max Horn

Quotient algorithms

## L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Quotient algorithms

2 L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

5 Two examples

#### *L*-presentations

Polycyclic quotients of *L*-presented groups

Max Horn

Quotient algorithms

#### L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Let X be a finite set of abstract generators, let F be the free group on X. Let R and Q be finite subsets of F and  $\phi$  a finite set of endomorphisms of F. Then

 $\langle X \mid Q \mid \phi \mid R \rangle$ 

is called a (finite) *L*-presentation.

Denote by  $\phi^*$  the monoid generated by  $\phi$ . Then the finite *L*-presentation defines a group F/K, where

$$\mathcal{K} = \langle Q \cup \bigcup_{\sigma \in \phi^*} \sigma(R) \rangle^F \trianglelefteq F.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

F/K is a (finitely) *L*-presented group.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

#### L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

## Every finitely presented group ⟨X | S⟩ is finitely L-presented, e.g. as ⟨X | S | ∅ | ∅⟩ or as ⟨X | ∅ | ∅ | S⟩.

- There are interesting groups which are not finitely presented but admit finite *L*-presentations.
- The Grigorchuk group arose as a counterexample to the Burnside problem and has very interesting properties.

...2-group, amenable, automatic, intermediate growth, just infinite, residually finite...

• The Basilica group is an example with easy description.

... amenable, automatic, exponential growth, just non-solvable ....

$$\left\langle \mathsf{a},\mathsf{b} \mid \emptyset \mid (\mathsf{a},\mathsf{b}) \mapsto (\mathsf{b}^2,\mathsf{a}) \mid [\mathsf{a},\mathsf{b}^{-1}\mathsf{a}\mathsf{b}] 
ight
angle$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

#### L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- Every finitely presented group ⟨X | S⟩ is finitely
   L-presented, e.g. as ⟨X | S | ∅ | ∅⟩ or as ⟨X | ∅ | ∅ | S⟩.
- There are interesting groups which are not finitely presented but admit finite *L*-presentations.
- The Grigorchuk group arose as a counterexample to the Burnside problem and has very interesting properties.

...2-group, amenable, automatic, intermediate growth, just infinite, residually finite...

• The Basilica group is an example with easy description.

... amenable, automatic, exponential growth, just non-solvable ....

$$\left\langle \mathsf{a},\mathsf{b} \mid \emptyset \mid (\mathsf{a},\mathsf{b}) \mapsto (\mathsf{b}^2,\mathsf{a}) \mid [\mathsf{a},\mathsf{b}^{-1}\mathsf{a}\mathsf{b}] 
ight
angle$$

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

#### L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- Every finitely presented group ⟨X | S⟩ is finitely
   L-presented, e.g. as ⟨X | S | ∅ | ∅⟩ or as ⟨X | ∅ | ∅ | S⟩.
- There are interesting groups which are not finitely presented but admit finite *L*-presentations.
- The Grigorchuk group arose as a counterexample to the Burnside problem and has very interesting properties.

...2-group, amenable, automatic, intermediate growth, just infinite, residually finite...

• The Basilica group is an example with easy description.

... amenable, automatic, exponential growth, just non-solvable ....

 $\left\langle \mathsf{a},\mathsf{b} \mid \emptyset \mid (\mathsf{a},\mathsf{b}) \mapsto (\mathsf{b}^2,\mathsf{a}) \mid [\mathsf{a},\mathsf{b}^{-1}\mathsf{a}\mathsf{b}] 
ight
angle$ 

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

#### L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- Every finitely presented group ⟨X | S⟩ is finitely
   L-presented, e.g. as ⟨X | S | ∅ | ∅⟩ or as ⟨X | ∅ | ∅ | S⟩.
- There are interesting groups which are not finitely presented but admit finite *L*-presentations.
- The Grigorchuk group arose as a counterexample to the Burnside problem and has very interesting properties.

 $\dots$  2-group, amenable, automatic, intermediate growth, just infinite, residually finite...

• The Basilica group is an example with easy description.

... amenable, automatic, exponential growth, just non-solvable ....

$$ig\langle \mathsf{a},\mathsf{b} \mid \emptyset \mid (\mathsf{a},\mathsf{b}) \mapsto (\mathsf{b}^2,\mathsf{a}) \mid [\mathsf{a},\mathsf{b}^{-1}\mathsf{a}\mathsf{b}]ig
angle$$

#### Overview

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Quotient algorithms

L-presented groups

Olycyclic quotient algorithm

Gröbner bases in group rings

#### 5 Two examples

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● ⑦ � ⑦

## Quotient algorithm: Overview

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Steps of polycyclic quotient algorithm:

- Input: group G, positive integer c
- Output: polycyclic pres. of  $G/G^{(c)}$  if it exists, or an error (recall  $G^{(0)} := G$ ,  $G^{(i+1)} := [G^{(i)}, G^{(i)}]$ )
- Also computes *effective* epimorphism  $\psi_c : G \to G/G^{(c)}$ .

Use an inductive approach:

- Start with the trivial epimorphism  $\psi_0: G \to 1 = G/G^{(0)}$ .
- Repeatedly run extension algorithm: Extend effective epimorphism  $\psi_i : G \to G/G^{(i)}$ , to  $\psi_{i+1} : G \to G/G^{(i+1)}$  and determine polycyclic presentation of  $G/G^{(i+1)}$ , if any, or an error.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Input:

- An L-presented G and a polycyclic presented H;
- An effective epimorphism  $\psi : G \rightarrow H$  with kernel N;
- A description for a subgroup  $U \trianglelefteq H$ .

Set  $M := [\psi^{-1}(U), N]$ .  $U = 1 \implies M = N' \rightsquigarrow$  polycyclic quotients.  $U = H \implies M = [G, N] \rightsquigarrow$  nilpotent quotients. From now on U = 1 and M = N'.

#### Output:

- Check whether G/M is polycyclic, and, if so, then
- an effective epimorphism  $\nu : G \to K$  with kernel M and polycyclic presentation for K.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Input:

- An *L*-presented *G* and a polycyclic presented *H*;
- An effective epimorphism  $\psi : G \rightarrow H$  with kernel N;
- A description for a subgroup  $U \trianglelefteq H$ .

Set  $M := [\psi^{-1}(U), N]$ .

 $U = 1 \implies M = N' \rightsquigarrow$  polycyclic quotients.  $U = H \implies M = [G, N] \rightsquigarrow$  nilpotent quotients From now on U = 1 and M = N'

#### Output:

- Check whether G/M is polycyclic, and, if so, then
- an effective epimorphism  $\nu : G \to K$  with kernel M and polycyclic presentation for K.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Input:

- An *L*-presented *G* and a polycyclic presented *H*;
- An effective epimorphism  $\psi : G \rightarrow H$  with kernel N;
- A description for a subgroup  $U \trianglelefteq H$ .

Set  $M := [\psi^{-1}(U), N]$ .  $U = 1 \implies M = N' \rightsquigarrow$  polycyclic quotients.  $U = H \implies M = [G, N] \rightsquigarrow$  nilpotent quotients. From now on U = 1 and M = N'.

#### Output:

- Check whether G/M is polycyclic, and, if so, then
- an effective epimorphism  $\nu : G \to K$  with kernel M and polycyclic presentation for K.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Input:

- An *L*-presented *G* and a polycyclic presented *H*;
- An effective epimorphism  $\psi : G \rightarrow H$  with kernel N;
- A description for a subgroup  $U \trianglelefteq H$ .

Set  $M := [\psi^{-1}(U), N]$ .  $U = 1 \implies M = N' \rightsquigarrow$  polycyclic quotients.  $U = H \implies M = [G, N] \rightsquigarrow$  nilpotent quotients. From now on U = 1 and M = N'.

#### Output:

- Check whether G/M is polycyclic, and, if so, then
- an effective epimorphism  $\nu : G \to K$  with kernel M and polycyclic presentation for K.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Input:

- An *L*-presented *G* and a polycyclic presented *H*;
- An effective epimorphism  $\psi : G \rightarrow H$  with kernel N;
- A description for a subgroup  $U \trianglelefteq H$ .

Set  $M := [\psi^{-1}(U), N]$ .  $U = 1 \implies M = N' \rightsquigarrow$  polycyclic quotients.  $U = H \implies M = [G, N] \rightsquigarrow$  nilpotent quotients. From now on U = 1 and M = N'.

#### Output:

- Check whether G/M is polycyclic, and, if so, then
- an effective epimorphism  $\nu : G \to K$  with kernel M and polycyclic presentation for K.



Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples



# N/M is a (right) ℤH-module. K is an extension of N/M by H.

・ロト ・ 一下・ ・ ヨト ・ ヨト

#### Steps:

Compute finite ZH-module presentation for N/M.

O Check whether N/M has finite Z-rank (⇔ K is polycyclic), and, if so, then

determine generators for N/M as abelian group;
 extend N/M by H to K and ψ to ν.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples



- N/M is a (right)  $\mathbb{Z}H$ -module.
- K is an extension of N/M by H.

・ロット (雪) (日) (日) 日

#### Steps:

**(**) Compute finite  $\mathbb{Z}H$ -module presentation for N/M.

- Oteck whether N/M has finite Z-rank (⇔ K is polycyclic), and, if so, then
- determine generators for N/M as abelian group; extend N/M by H to K and ψ to ν.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples



- N/M is a (right)  $\mathbb{Z}H$ -module.
- K is an extension of N/M by H.

#### Steps:

- Compute finite  $\mathbb{Z}H$ -module presentation for N/M.
- ② Check whether N/M has finite Z-rank (⇔ K is polycyclic), and, if so, then
- determine generators for N/M as abelian group; extend N/M by H to K and ψ to ν.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples



- N/M is a (right)  $\mathbb{Z}H$ -module.
- K is an extension of N/M by H.

#### Steps:

- Compute finite  $\mathbb{Z}H$ -module presentation for N/M.
- ② Check whether N/M has finite Z-rank (⇔ K is polycyclic), and, if so, then
- determine generators for N/M as abelian group; extend N/M by H to K and ψ to ν.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Step 1: Compute a finite $\mathbb{Z}H$ -module presentation for N/M.

- N/M ≅ V/W for a free ℤH-module V of finite rank and a submodule W.
- W is determined by the relations of G, plus  $\psi : G \to H$ .
- Problem: Infinitely many relators:  $Q \cup \bigcup_{\sigma \in \phi^*} \sigma(R)$ .
- But we can filter the relators by length of σ, this yields an ascending chain of submodules W<sub>1</sub> ⊆ W<sub>2</sub> ⊆ ... ⊆ W.
- $\mathbb{Z}H$ -modules are Noetherian (as H is polycyclic), hence  $\exists n \in \mathbb{N}$ , such that  $W_n = W_{n+1} = W_{n+2} = \ldots = W$ .

#### ▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ ヨ ■ ● の Q ()

Polycyclic quotients of *L*-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Step 1: Compute a finite $\mathbb{Z}H$ -module presentation for N/M.

- N/M ≅ V/W for a free ℤH-module V of finite rank and a submodule W.
- W is determined by the relations of G, plus  $\psi : G \to H$ .
- Problem: Infinitely many relators:  $Q \cup \bigcup_{\sigma \in \phi^*} \sigma(R)$ .
- But we can filter the relators by length of σ, this yields an ascending chain of submodules W<sub>1</sub> ⊆ W<sub>2</sub> ⊆ ... ⊆ W.
- $\mathbb{Z}H$ -modules are Noetherian (as H is polycyclic), hence  $\exists n \in \mathbb{N}$ , such that  $W_n = W_{n+1} = W_{n+2} = \ldots = W$ .

#### ・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

Polycyclic quotients of *L*-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Step 1: Compute a finite $\mathbb{Z}H$ -module presentation for N/M.

- N/M ≅ V/W for a free ℤH-module V of finite rank and a submodule W.
- W is determined by the relations of G, plus  $\psi : G \to H$ .
- Problem: Infinitely many relators:  $Q \cup \bigcup_{\sigma \in \phi^*} \sigma(R)$ .
- But we can filter the relators by length of σ, this yields an ascending chain of submodules W<sub>1</sub> ⊆ W<sub>2</sub> ⊆ ... ⊆ W.
- $\mathbb{Z}H$ -modules are Noetherian (as H is polycyclic), hence  $\exists n \in \mathbb{N}$ , such that  $W_n = W_{n+1} = W_{n+2} = \ldots = W$ .

(日) (日) (日) (日) (日) (日) (日) (日)

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- Step 1: Compute a finite  $\mathbb{Z}H$ -module presentation for N/M.
  - N/M ≅ V/W for a free ℤH-module V of finite rank and a submodule W.
  - W is determined by the relations of G, plus  $\psi : G \to H$ .
  - Problem: Infinitely many relators:  $Q \cup \bigcup_{\sigma \in \phi^*} \sigma(R)$ .
  - But we can filter the relators by length of σ, this yields an ascending chain of submodules W<sub>1</sub> ⊆ W<sub>2</sub> ⊆ ... ⊆ W.
  - $\mathbb{Z}H$ -modules are Noetherian (as H is polycyclic), hence  $\exists n \in \mathbb{N}$ , such that  $W_n = W_{n+1} = W_{n+2} = \ldots = W$ .

(日) (日) (日) (日) (日) (日) (日) (日)

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- Step 1: Compute a finite  $\mathbb{Z}H$ -module presentation for N/M.
  - N/M ≅ V/W for a free ℤH-module V of finite rank and a submodule W.
  - W is determined by the relations of G, plus  $\psi : G \to H$ .
  - Problem: Infinitely many relators:  $Q \cup \bigcup_{\sigma \in \phi^*} \sigma(R)$ .
  - But we can filter the relators by length of σ, this yields an ascending chain of submodules W<sub>1</sub> ⊆ W<sub>2</sub> ⊆ ... ⊆ W.
  - $\mathbb{Z}H$ -modules are Noetherian (as H is polycyclic), hence  $\exists n \in \mathbb{N}$ , such that  $W_n = W_{n+1} = W_{n+2} = \ldots = W$ .

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Step 2: Is N/M finitely generated as abelian group?

- Compute Gröbner basis of W, use this to determine  $\mathbb{Z}$ -rank of V/W.
- For this, adapt methods by Lo and Madlener-Reinert.

Step 3: Finding group generators for  $N/M \cong V/W$  and extending N/M by H to K and  $\psi$  to  $\nu$ .

- Generators can be extracted from the Gröbner basis.
- Rest is tedious, but doable (linear algebra over integers).

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Step 2: Is N/M finitely generated as abelian group?

- Compute Gröbner basis of W, use this to determine  $\mathbb{Z}$ -rank of V/W.
- For this, adapt methods by Lo and Madlener-Reinert.

Step 3: Finding group generators for  $N/M \cong V/W$  and extending N/M by H to K and  $\psi$  to  $\nu$ .

- Generators can be extracted from the Gröbner basis.
- Rest is tedious, but doable (linear algebra over integers).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Step 2: Is N/M finitely generated as abelian group?

- Compute Gröbner basis of W, use this to determine  $\mathbb{Z}$ -rank of V/W.
- For this, adapt methods by Lo and Madlener-Reinert.

# Step 3: Finding group generators for $N/M \cong V/W$ and extending N/M by H to K and $\psi$ to $\nu$ .

- Generators can be extracted from the Gröbner basis.
- Rest is tedious, but doable (linear algebra over integers).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Step 2: Is N/M finitely generated as abelian group?

- Compute Gröbner basis of W, use this to determine  $\mathbb{Z}$ -rank of V/W.
- For this, adapt methods by Lo and Madlener-Reinert.

Step 3: Finding group generators for  $N/M \cong V/W$  and extending N/M by H to K and  $\psi$  to  $\nu$ .

- Generators can be extracted from the Gröbner basis.
- Rest is tedious, but doable (linear algebra over integers).

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Step 2: Is N/M finitely generated as abelian group?

- Compute Gröbner basis of W, use this to determine  $\mathbb{Z}$ -rank of V/W.
- For this, adapt methods by Lo and Madlener-Reinert.

Step 3: Finding group generators for  $N/M \cong V/W$  and extending N/M by H to K and  $\psi$  to  $\nu$ .

- Generators can be extracted from the Gröbner basis.
- Rest is tedious, but doable (linear algebra over integers).

#### Overview

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

#### 5 Two examples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Polycyclic quotients of *L*-presented groups

Max Horn

Quotient algorithm

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Group ring elements of  $\mathbb{K}G$  are similar to polynomials. Which properties are crucial for Gröbner bases in  $\mathbb{K}[x_1, \ldots, x_n]$ ?

- (P1) Divisibility of monomials. → Well partial order ≤ on group elements.
- (P2) Finite monomial set have a *unique* least common multiple  $\sim$  finite subsets of *G* with a common upper bound have a unique least common upper bound

(P3) A total order  $\leq$  linearizaing  $\leq$  (necessarily a well-order). (P4)  $g \leq xg$  and  $f \leq g \implies xf \leq xg$ .

Polycyclic quotients of *L*-presented groups

Max Horn

Quotient algorithm

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Group ring elements of  $\mathbb{K}G$  are similar to polynomials. Which properties are crucial for Gröbner bases in  $\mathbb{K}[x_1, \ldots, x_n]$ ?

- (P1) Divisibility of monomials. → Well partial order ≤ on group elements.
- (P2) Finite monomial set have a *unique* least common multiple  $\sim$  finite subsets of *G* with a common upper bound have a unique least common upper bound

(P3) A total order  $\leq$  linearizaing  $\leq$  (necessarily a well-order). (P4)  $g \leq xg$  and  $f \leq g \implies xf \leq xg$ .

Polycyclic quotients of *L*-presented groups

Max Horn

Quotient algorithm

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Group ring elements of  $\mathbb{K}G$  are similar to polynomials. Which properties are crucial for Gröbner bases in  $\mathbb{K}[x_1, \ldots, x_n]$ ?

- (P1) Divisibility of monomials.  $\rightsquigarrow$  Well partial order  $\preceq$  on group elements.
- (P2) Finite monomial set have a *unique* least common multiple  $\sim$  finite subsets of *G* with a common upper bound have a unique least common upper bound

(P3) A total order  $\leq$  linearizaing  $\leq$  (necessarily a well-order). (P4)  $g \leq xg$  and  $f \leq g \implies xf \leq xg$ .

Polycyclic quotients of *L*-presented groups

Max Horn

Quotient algorithm

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Group ring elements of  $\mathbb{K}G$  are similar to polynomials. Which properties are crucial for Gröbner bases in  $\mathbb{K}[x_1, \ldots, x_n]$ ?

- (P1) Divisibility of monomials.  $\rightsquigarrow$  Well partial order  $\preceq$  on group elements.
- (P2) Finite monomial set have a *unique* least common multiple  $\sim$  finite subsets of *G* with a common upper bound have a unique least common upper bound

(P3) A total order  $\leq$  linearizaing  $\preceq$  (necessarily a well-order).

(P4)  $g \preceq xg$  and  $f \leq g \implies xf \leq xg$ .

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

# • How to compute a Gröbner basis? Adapt Buchberger's algorithm!

 But watch out: Lead monomials can change unexpectedly (lm(x f) ≠ x lm(f))! ~ need to introduce additional "polynomials" during algorithm.

• One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Integer coefficients  $\sim$  complicates things further.  $\otimes$ 

Polycyclic quotients of *L*-presented groups

Max Horn

- Quotient algorithms
- L-presented groups
- Polycyclic quotient algorithm
- Gröbner bases in group rings

Two examples

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly (lm(x f) ≠ x lm(f))! ~ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

 $\bullet$  Integer coefficients  $\leadsto$  complicates things further.  $\circledast$ 

Polycyclic quotients of *L*-presented groups

Max Horn

- Quotient algorithms
- L-presented groups
- Polycyclic quotient algorithm
- Gröbner bases in group rings

Two examples

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly (lm(x f) ≠ x lm(f))! ~ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

ullet Integer coefficients  $\sim$  complicates things further.  $\ensuremath{\textcircled{\sc black}}$ 

Polycyclic quotients of *L*-presented groups

Max Horn

- Quotient algorithms
- L-presented groups
- Polycyclic quotient algorithm
- Gröbner bases in group rings

Two examples

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly (lm(x f) ≠ x lm(f))! ~ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Integer coefficients  $\rightsquigarrow$  complicates things further.  $\circledast$ 

#### Overview

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings



#### Two examples

Polycyclic quotients o L-presented groups

Max Horn

Quotient algorithm:

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

$$\begin{split} G &:= \langle a, b \mid a^4, (a^{-2}b)^2, (babab)^{-1}aba \rangle \\ H &:= \langle a, b \mid \emptyset \mid (a, b) \mapsto (b^2, a) \mid [a, b^{-1}ab] \rangle \text{ (Basilica group)} \\ (\text{LC}) &\rightsquigarrow \text{ lower central series: abelian invariants of } \gamma_{(i)} / \gamma_{(i+1)} \\ (D) &\rightsquigarrow \text{ derived serives: abelian invariants of } G^{(i)} / G^{(i+1)} \end{split}$$

|      | G     |       | Н     |                         |  |
|------|-------|-------|-------|-------------------------|--|
| Step | (LC)  | (D)   | (LC)  | (D)                     |  |
| 1    | (2,4) | (2,4) | (0,0) | (0,0)                   |  |
| 2    | (2)   | (0,0) | (0)   | (0,0,0)                 |  |
| 3    | (2)   | ()    | (4)   | (2,2,0,0,0,0,0,0,0,0,0) |  |
| 4    | (2)   | ()    | (4)   | ?                       |  |
| 5    | (2)   | ()    | (4,4) | ?                       |  |

#### Two examples

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

G: An f.p. group; (LC): lower central series; (D): derived series.

Reaches the maximal solvable quotient of G after 3 steps along the derived series: it is polycyclic of Hirsch length 2. Along the lower central series, we will never reach the maximal solvable quotient, since all nilpotent quotients of G are finite.

|      | G     |       | Н     |                         |  |
|------|-------|-------|-------|-------------------------|--|
| Step | (LC)  | (D)   | (LC)  | (D)                     |  |
| 1    | (2,4) | (2,4) | (0,0) | (0,0)                   |  |
| 2    | (2)   | (0,0) | (0)   | (0,0,0)                 |  |
| 3    | (2)   | ()    | (4)   | (2,2,0,0,0,0,0,0,0,0,0) |  |
| 4    | (2)   | ()    | (4)   | ?                       |  |
| 5    | (2)   | ()    | (4,4) | ?                       |  |

#### Two examples

Polycyclic quotients of *L*-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

H: Basilica group; (LC): lower central series; (D): derived series.

We see that  $H/H^{(3)}$  is polycyclic of Hirsch length 13. On the other hand,  $H/\gamma_{48}(H)$  has been determined by Bartholdi-Eick-Hartung: this has only Hirsch length 3.



## Outlook

Polycyclic quotients of L-presented groups

Max Horn

- Quotient algorithms
- L-presented groups
- Polycyclic quotient algorithm
- Gröbner bases in group rings

Two examples

- Many improvements and optimizations planned, especially for Gröbner basis computations:
  - Adapting improvements from  $F_4$  algorithm. (And  $F_5$ ?)
  - Exploit ideas from algorithms for Z-lattice computations, such as Hermite-Normal-form algorithms, *LLL*-algorithm.

- Take advantage of parallelization.
- We will make our implementation available as a GAP share package in the future.

| Polycyclic   |
|--------------|
| quotients of |
| L-presented  |
| groups       |

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases

Two examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presentec groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Which properties are crucial Gröbner bases in $\mathbb{K}[x_1, \ldots, x_n]$ ?

1) Divisibility of monomials  $\rightsquigarrow$  a well partial order  $\preceq$ .

- 2) Any finite monomial set has a *unique* least common multiple wrt. this partial order.
- P3) A total order ≤ on the monomials which is a linearization of ≤ ~ necessarily is a well-order.

- P4  $\rightsquigarrow$  if  $\operatorname{Im}(x f) = x \operatorname{Im}(f)$
- $P1+P4 \rightarrow$  reduction
- $P1+P3 \rightarrow$  finiteness of Gröbner bases

Polycyclic quotients of *L*-presented groups

Max Horn

Quotient algorithm:

L-presentec groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Which properties are crucial Gröbner bases in $\mathbb{K}[x_1, \ldots, x_n]$ ?

#### (P1) Divisibility of monomials $\rightsquigarrow$ a well partial order $\preceq$ .

2) Any finite monomial set has a *unique* least common multiple wrt. this partial order.

P3) A total order ≤ on the monomials which is a linearization of ≤ ~ necessarily is a well-order.

- P4  $\rightsquigarrow$  if  $\operatorname{Im}(x f) = x \operatorname{Im}(f)$
- $P1+P4 \rightarrow$  reduction
- $P1+P3 \rightarrow$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithm

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Which properties are crucial Gröbner bases in  $\mathbb{K}[x_1, \ldots, x_n]$ ?

(P1) Divisibility of monomials  $\rightsquigarrow$  a well partial order  $\preceq$ .

(P2) Any finite monomial set has a *unique* least common multiple wrt. this partial order.

(3) A total order ≤ on the monomials which is a linearization of ≤ ~ necessarily is a well-order.

- P4  $\rightsquigarrow$  if  $\operatorname{Im}(x f) = x \operatorname{Im}(f)$
- $P1+P4 \rightarrow$  reduction
- $P1+P3 \rightarrow$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithm

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Which properties are crucial Gröbner bases in  $\mathbb{K}[x_1, \ldots, x_n]$ ?

(P1) Divisibility of monomials  $\rightsquigarrow$  a well partial order  $\preceq$ .

(P2) Any finite monomial set has a *unique* least common multiple wrt. this partial order.

(P3) A total order  $\leq$  on the monomials which is a linearization of  $\preceq \sim$  necessarily is a well-order.

- P4  $\rightarrow$  if  $\operatorname{Im}(x f) = x \operatorname{Im}(f)$
- $P1+P4 \rightarrow$  reduction
- $P1+P3 \rightarrow$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithm

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Which properties are crucial Gröbner bases in  $\mathbb{K}[x_1, \ldots, x_n]$ ?

(P1) Divisibility of monomials  $\rightsquigarrow$  a well partial order  $\preceq$ .

(P2) Any finite monomial set has a *unique* least common multiple wrt. this partial order.

(P3) A total order  $\leq$  on the monomials which is a linearization of  $\preceq \sim$  necessarily is a well-order.

- P4  $\rightarrow$  if  $\operatorname{Im}(x f) = x \operatorname{Im}(f)$
- $P1+P4 \rightarrow$  reduction
- $P1+P3 \rightarrow$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithm

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- Which properties are crucial Gröbner bases in  $\mathbb{K}[x_1, \ldots, x_n]$ ?
- (P1) Divisibility of monomials  $\rightsquigarrow$  a well partial order  $\preceq$ .
- (P2) Any finite monomial set has a *unique* least common multiple wrt. this partial order.
- (P3) A total order  $\leq$  on the monomials which is a linearization of  $\preceq \sim$  necessarily is a well-order.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- P4  $\rightsquigarrow$  if  $\operatorname{Im}(x f) = x \operatorname{Im}(f)$
- $P1+P4 \rightarrow$  reduction
- $P1+P3 \rightarrow$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithm

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- Which properties are crucial Gröbner bases in  $\mathbb{K}[x_1, \ldots, x_n]$ ?
- (P1) Divisibility of monomials  $\rightsquigarrow$  a well partial order  $\preceq$ .
- (P2) Any finite monomial set has a *unique* least common multiple wrt. this partial order.
- (P3) A total order  $\leq$  on the monomials which is a linearization of  $\preceq \sim$  necessarily is a well-order.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- P4  $\rightsquigarrow$  if  $\operatorname{Im}(x f) = x \operatorname{Im}(f)$
- $P1+P4 \rightarrow$  reduction
- $P1+P3 \rightarrow$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithm

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- Which properties are crucial Gröbner bases in  $\mathbb{K}[x_1, \ldots, x_n]$ ?
- (P1) Divisibility of monomials  $\rightsquigarrow$  a well partial order  $\preceq$ .
- (P2) Any finite monomial set has a *unique* least common multiple wrt. this partial order.
- (P3) A total order  $\leq$  on the monomials which is a linearization of  $\preceq \sim$  necessarily is a well-order.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- P4  $\rightsquigarrow$  if  $\operatorname{Im}(x f) = x \operatorname{Im}(f)$
- $P1+P4 \rightarrow$  reduction
- $P1+P3 \rightsquigarrow$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order  $\leq$  and a total order  $\leq$  is a reduction group if

R1)  $\leq$  is a well partial order,

- R2) finite subsets of *G* with a common upper bound have a unique least common upper bound,
- R3)  $\leq$  extends  $\preceq$  linearly, and

R4) for all  $x, f, g \in G$ , if  $g \preceq xg$  and  $f \leq g$  then  $xf \leq xg$ .

- R4  $\sim$  if  $g \preceq xg$  then  $\operatorname{Im}(x g) = x \operatorname{Im}(g)$
- R1+R4  $\rightsquigarrow$  reduction
- R1+R3  $\sim$  finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order  $\leq$  and a total order  $\leq$  is a reduction group if

(R1)  $\leq$  is a well partial order,

 finite subsets of G with a common upper bound have a unique least common upper bound,

R3)  $\leq$  extends  $\preceq$  linearly, and

R4) for all  $x, f, g \in G$ , if  $g \preceq xg$  and  $f \leq g$  then  $xf \leq xg$ .

- R4  $\sim$  if  $g \preceq xg$  then  $\operatorname{Im}(x g) = x \operatorname{Im}(g)$
- R1+R4  $\rightsquigarrow$  reduction
- R1+R3  $\sim$  finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order  $\leq$  and a total order  $\leq$  is a reduction group if

(R1)  $\leq$  is a well partial order,

(R2) finite subsets of G with a common upper bound have a unique least common upper bound,

 $(3) \leq extends \leq linearly, and$ 

R4) for all  $x, f, g \in G$ , if  $g \preceq xg$  and  $f \leq g$  then  $xf \leq xg$ 

- R4  $\sim$  if  $g \preceq xg$  then  $\operatorname{Im}(x g) = x \operatorname{Im}(g)$
- R1+R4  $\rightsquigarrow$  reduction
- R1+R3  $\sim$  finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

## Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order  $\leq$  and a total order  $\leq$  is a reduction group if

(R1)  $\leq$  is a well partial order,

(R2) finite subsets of G with a common upper bound have a unique least common upper bound,

(R3)  $\leq$  extends  $\leq$  linearly, and

R4) for all  $x, f, g \in G$ , if  $g \preceq xg$  and  $f \leq g$  then  $xf \leq xg$ 

- R4  $\sim$  if  $g \preceq xg$  then  $\operatorname{Im}(x g) = x \operatorname{Im}(g)$
- R1+R4  $\rightsquigarrow$  reduction
- R1+R3  $\sim$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

## Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order  $\leq$  and a total order  $\leq$  is a reduction group if

(R1)  $\leq$  is a well partial order,

- (R2) finite subsets of G with a common upper bound have a unique least common upper bound,
- (R3)  $\leq$  extends  $\leq$  linearly, and

(R4) for all  $x, f, g \in G$ , if  $g \preceq xg$  and  $f \leq g$  then  $xf \leq xg$ .

- R4  $\sim$  if  $g \preceq xg$  then  $\operatorname{Im}(x g) = x \operatorname{Im}(g)$
- R1+R4  $\rightsquigarrow$  reduction
- R1+R3  $\rightsquigarrow$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

## Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order  $\leq$  and a total order  $\leq$  is a reduction group if

(R1)  $\leq$  is a well partial order,

- (R2) finite subsets of G with a common upper bound have a unique least common upper bound,
- (R3)  $\leq$  extends  $\leq$  linearly, and

(R4) for all  $x, f, g \in G$ , if  $g \preceq xg$  and  $f \leq g$  then  $xf \leq xg$ .

- R4  $\rightsquigarrow$  if  $g \preceq xg$  then  $\operatorname{Im}(x g) = x \operatorname{Im}(g)$
- $R1+R4 \rightarrow$  reduction

• R1+R3  $\sim$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

## Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order  $\leq$  and a total order  $\leq$  is a reduction group if

(R1)  $\leq$  is a well partial order,

- (R2) finite subsets of G with a common upper bound have a unique least common upper bound,
- (R3)  $\leq$  extends  $\leq$  linearly, and

(R4) for all  $x, f, g \in G$ , if  $g \preceq xg$  and  $f \leq g$  then  $xf \leq xg$ .

- R4  $\sim$  if  $g \leq xg$  then  $\operatorname{Im}(x g) = x \operatorname{Im}(g)$
- R1+R4  $\rightsquigarrow$  reduction

• R1+R3  $\sim$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

## Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order  $\leq$  and a total order  $\leq$  is a reduction group if

(R1)  $\leq$  is a well partial order,

- (R2) finite subsets of G with a common upper bound have a unique least common upper bound,
- (R3)  $\leq$  extends  $\leq$  linearly, and

(R4) for all  $x, f, g \in G$ , if  $g \preceq xg$  and  $f \leq g$  then  $xf \leq xg$ .

- R4  $\sim$  if  $g \preceq xg$  then  $\operatorname{Im}(x g) = x \operatorname{Im}(g)$
- R1+R4  $\rightsquigarrow$  reduction
- R1+R3  $\rightsquigarrow$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

## Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order  $\leq$  and a total order  $\leq$  is a reduction group if

(R1)  $\leq$  is a well partial order,

- (R2) finite subsets of G with a common upper bound have a unique least common upper bound,
- (R3)  $\leq$  extends  $\leq$  linearly, and

(R4) for all  $x, f, g \in G$ , if  $g \preceq xg$  and  $f \leq g$  then  $xf \leq xg$ .

- R4  $\rightsquigarrow$  if  $g \preceq xg$  then  $\operatorname{Im}(x g) = x \operatorname{Im}(g)$
- $R1+R4 \rightarrow$  reduction
- R1+R3  $\rightsquigarrow$  finiteness of Gröbner bases

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Definition

Let *I* be a left-ideal of a group ring. A Gröbner basis of *I* is a finite subset  $B \subset I$  such that for any non-zero  $f \in I$  there is  $b \in B$  such that  $Im(b) \preceq Im(f)$ .

#### heorem

Let B be a Gröbner basis of I. Then  $f \in \mathbb{K}G$  is contained in I if and only if f reduces to zero modulo B.

#### Corollary

Let B be a Gröbner basis of I. Then I is generated by B.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Definition

Let *I* be a left-ideal of a group ring. A Gröbner basis of *I* is a finite subset  $B \subset I$  such that for any non-zero  $f \in I$  there is  $b \in B$  such that  $Im(b) \preceq Im(f)$ .

#### Theorem

Let B be a Gröbner basis of I. Then  $f \in \mathbb{K}G$  is contained in I if and only if f reduces to zero modulo B.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

#### Corollary

Let B be a Gröbner basis of I. Then I is generated by B.

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

#### Definition

Let *I* be a left-ideal of a group ring. A Gröbner basis of *I* is a finite subset  $B \subset I$  such that for any non-zero  $f \in I$  there is  $b \in B$  such that  $Im(b) \preceq Im(f)$ .

#### Theorem

Let B be a Gröbner basis of I. Then  $f \in \mathbb{K}G$  is contained in I if and only if f reduces to zero modulo B.

### Corollary

Let B be a Gröbner basis of I. Then I is generated by B.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

# • How to compute a Gröbner basis? Adapt Buchberger's algorithm!

- But watch out: Lead monomials can change unexpectedly (lm(x f) ≠ x lm(f))! ~ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- So far, coefficients were from a field. But we need integer coefficients → complicates things further. ☺

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly (lm(x f) ≠ x lm(f))! ~ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- So far, coefficients were from a field. But we need integer coefficients → complicates things further. ☺

Polycyclic quotients of L-presented groups

Max Horn

- Quotient algorithms
- L-presented groups
- Polycyclic quotient algorithm
- Gröbner bases in group rings

Two examples

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly (lm(x f) ≠ x lm(f))! ~ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- So far, coefficients were from a field. But we need integer coefficients → complicates things further. ☺

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly (lm(x f) ≠ x lm(f))! ~ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- So far, coefficients were from a field. But we need integer coefficients → complicates things further. ☺