Computing polycyclic quotients of finitely (L-)presented groups via Gröbner bases

Max Horn
joint work with Bettina Eick
Technische Universität Braunschweig

ICMS 2010, Kobe, Japan

Overview

Polycyclic
quotients of L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples
(1) Quotient algorithms
(2) L-presented groups
(3) Polycyclic quotient algorithm

4 Gröbner bases in group rings
(5) Two examples

Overview

Polycyclic quotients of L-presented groups

Max Horn

(1) Quotient algorithms

Quotient algorithms

L-presented groups

Polycyclic quotient
3) Polycyclic quotient algorithm algorithm

Gröbner bases in group rings

Two examples

2. L-presented groups

4 Gröbner bases in group rings

(5) Two examples

Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

- A quotient algorithm takes a group G (e.g. given via a finite presentation) and computes a quotient H.
- An effective quotient map $\pi: G \rightarrow H$ is also computed, i.e., allowing computation of images and preimages.
- H is ideally more tractable than G (e.g. finite or nilpotent), yet should share interesting features of G.
- Development and implementation of quotients methods for finitely presented groups have a long history.

Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient algorithm

- A quotient algorithm takes a group G (e.g. given via a finite presentation) and computes a quotient H.
- An effective quotient map $\pi: G \rightarrow H$ is also computed, i.e., allowing computation of images and preimages.
- H is ideally more tractable than G (e.g. finite or nilpotent), yet should share interesting features of G
- Development and implementation of quotients methods for finitely presented groups have a long history.

Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings Two examples

- A quotient algorithm takes a group G (e.g. given via a finite presentation) and computes a quotient H.
- An effective quotient map $\pi: G \rightarrow H$ is also computed, i.e., allowing computation of images and preimages.
- H is ideally more tractable than G (e.g. finite or nilpotent), yet should share interesting features of G.
- Development and implementation of quotients methods for finitely presented groups have a long history.

Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

- Development and implementation of quotients methods for finitely presented groups have a long history.

Types of Quotient Algorithms

Polycyclic quotients of L-presented groups

Max Horn

Quotient
algorithms
L-presented
groups
Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G / G^{\prime}
- finite p-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brïckner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)
H is a polycyclic group
$\Leftrightarrow H$ is solvable and all subgroups are finitely generated $\Leftrightarrow \exists$ series $H=H_{1} \triangleright \ldots \triangleright H_{n} \triangleright 1$ with H_{i} / H_{i+1} cyclic

Types of Quotient Algorithms

Polycyclic
quotients of L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G / G^{\prime}
- finite p-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)
H is a polycyclic group
$\Leftrightarrow H$ is solvable and all subgroups are finitely generated $\Leftrightarrow \exists$ series $H=H_{1} \triangleright \ldots \triangleright H_{n} \triangleright 1$ with H_{i} / H_{i+1} cyclic

Types of Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G / G^{\prime}
- finite p-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Io; most general in this sequence)
H is a polycyclic group
$\Leftrightarrow H$ is solvable and all subgroups are finitely generated $\Leftrightarrow \exists$ series $H=H_{1} \triangleright \ldots \triangleright H_{n} \triangleright 1$ with H_{i} / H_{i+1} cyclic

Types of Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G / G^{\prime}
- finite p-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)
H is a polycyclic group
$\Leftrightarrow H$ is solvable and all subgroups are finitely generated $\Leftrightarrow \exists$ series $H=H_{1} \triangleright \ldots \triangleright H_{n} \triangleright 1$ with H_{i} / H_{i+1} cyclic

Types of Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms
L-presented
groups
Polycyclic
quotient algorithm

Gröbner bases in group rings Two examples

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G / G^{\prime}
- finite p-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)
H is a polycyclic group
$\Leftrightarrow H$ is solvable and all subgroups are finitely generated $\Leftrightarrow \exists$ series $H=H_{1} \triangleright \ldots \triangleright H_{n} \triangleright 1$ with H_{i} / H_{i+1} cyclic

Types of Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G / G^{\prime}
- finite p-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)
H is a polycyclic group
$\Leftrightarrow H$ is solvable and all subgroups are finitely generated $\Leftrightarrow \exists$ series $H=H_{1} \triangleright \ldots \triangleright H_{n} \triangleright 1$ with H_{i} / H_{i+1} cyclic

Types of Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G / G^{\prime}
- finite p-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)
H is a polycyclic group
$\Leftrightarrow H$ is solvable and all subgroups are finitely generated $\Leftrightarrow \exists$ series $H=H_{1} \triangleright \ldots \triangleright H_{n} \triangleright 1$ with H_{i} / H_{i+1} cyclic

Types of Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G / G^{\prime}
- finite p-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)
H is a polycyclic group
$\Leftrightarrow H$ is solvable and all subgroups are finitely generated

Types of Quotient Algorithms

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

Let G be a finitely presented group. Various quotient algorithms exist for such groups. They allow computing ...

- maximal abelian quotients, i.e., G / G^{\prime}
- finite p-group quotients (Newman and O'Brien)
- finite solvable quotients (Niemeyer; Brückner and Plesken)
- nilpotent quotients (Nickel)
- polycyclic quotients (Lo; most general in this sequence)
H is a polycyclic group
$\Leftrightarrow H$ is solvable and all subgroups are finitely generated
$\Leftrightarrow \exists$ series $H=H_{1} \triangleright \ldots \triangleright H_{n} \triangleright 1$ with H_{i} / H_{i+1} cyclic

Our contribution

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

We implemented a polycyclic quotient algorithm for L-presented groups, partially based on the work by Eddie Lo.

What is new?

- Extended input: L-presented, generalizing f.p.
- Flexibility: can compute polycylic, nilpotent, and "intermediate" quotients (note: a nilpotent quotient algorithm for L-presented due to Bartholdi, Eick and Hartung already exists)
- Effectivity: new ideas to improve algorithm

Moreover, it can be used everywhere GAP 4 runs. In contrast,
Lo's algorithm is difficult to use on modern computers
(compilation issues, relies on GAP 3)

Our contribution

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

We implemented a polycyclic quotient algorithm for L-presented groups, partially based on the work by Eddie Lo.

What is new?

- Extended input: L-presented, generalizing f.p.
- Flexibility: can compute polycylic, nilpotent, and "intermediate" quotients (note: a nilpotent quotient algorithm for L-presented due to Bartholdi, Eick and Hartung already exists)
- Effectivity: new ideas to improve algorithm

Moreover, it can be used everywhere GAP 4 runs. In contrast

Lo's algorithm is difficult to use on modern computers
(compilation issues, relies on GAP 3)

Our contribution

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

We implemented a polycyclic quotient algorithm for L-presented groups, partially based on the work by Eddie Lo.

What is new?

- Extended input: L-presented, generalizing f.p.
- Flexibility: can compute polycylic, nilpotent, and "intermediate" quotients (note: a nilpotent quotient algorithm for L-presented due to Bartholdi, Eick and Hartung already exists)
- Effectivity: new ideas to improve algorithm

Moreover, it can be used everywhere GAP 4 runs. In contrast, Lo's algorithm is difficult to use on modern computers (compilation issues, relies on GAP 3).

Overview

Polycyclic quotients of L-presented groups

Max Horn
(1) Quotient algorithms

Quotient
algorithms
L-presented groups

Polycyclic quotient

3 Polycyclic quotient algorithm algorithm

Gröbner bases in group rings

Two examples

4 Gröbner bases in group rings

(5) Two examples

L-presentations

Polycyclic

 quotients of L-presented groupsMax Horn

Quotient algorithms

Polycyclic

Let X be a finite set of abstract generators, let F be the free group on X. Let R and Q be finite subsets of F and ϕ a finite set of endomorphisms of F. Then

$$
\langle X| Q|\phi| R\rangle
$$

is called a (finite) L-presentation.
Denote by ϕ^{*} the monoid generated by ϕ. Then the finite L-presentation defines a group F / K, where

$$
K=\left\langle Q \cup \bigcup_{\sigma \in \phi^{*}} \sigma(R)\right\rangle^{F} \unlhd F
$$

F / K is a (finitely) L-presented group.

Examples of L-presented groups

Polycyclic
quotients of L-presented groups

Max Horn

Quotient
algorithms
L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examptes

- Every finitely presented group $\langle X \mid S\rangle$ is finitely L-presented, e.g. as $\langle X| S|\emptyset| \emptyset\rangle$ or as $\langle X| \emptyset|\emptyset| S\rangle$.
- There are interesting groups which are not finitely presented but admit finite L-presentations.
- The Grigorchuk group arose as a counterexample to the Burnside problem and has very interesting properties.

2-group. amenable, automatic, intermediate growth, just infinite, residually finite.

- The Basilica group is an example with easy description. amenable automatic exponential growth just non-solvable

$$
\left.\langle a, b| \emptyset\left|(a, b) \mapsto\left(b^{2}, a\right)\right|\left[a, b^{-1} a b\right]\right\rangle
$$

Examples of L-presented groups

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient algorithm

- Every finitely presented group $\langle X \mid S\rangle$ is finitely L-presented, e.g. as $\langle X| S|\emptyset| \emptyset\rangle$ or as $\langle X| \emptyset|\emptyset| S\rangle$.
- There are interesting groups which are not finitely presented but admit finite L-presentations.
- The Grigorchuk group arose as a counterexample to the Burnside problem and has very interesting properties.

2-group, amenable, automatic, intermediate growth, just infinite, residually finite.

- The Basilica group is an example with easy description. amenable, automatic, exponential growth, just non-solvable

$$
\left.\langle a, b| \emptyset\left|(a, b) \mapsto\left(b^{2}, a\right)\right|\left[a, b^{-1} a b\right]\right\rangle
$$

Examples of L-presented groups

Polycyclic

 quotients of L-presented groupsMax Horn

Quotient algorithms

- Every finitely presented group $\langle X \mid S\rangle$ is finitely L-presented, e.g. as $\langle X| S|\emptyset| \emptyset\rangle$ or as $\langle X| \emptyset|\emptyset| S\rangle$.
- There are interesting groups which are not finitely presented but admit finite L-presentations.
- The Grigorchuk group arose as a counterexample to the Burnside problem and has very interesting properties.
... 2-group, amenable, automatic, intermediate growth, just infinite, residually finite...
- The Basilica group is an example with easy description. amenable, automatic, exponential growth, just non-solvable

$$
\left.\langle a, b| \emptyset\left|(a, b) \mapsto\left(b^{2}, a\right)\right|\left[a, b^{-1} a b\right]\right\rangle
$$

Examples of L-presented groups

Polycyclic

 quotients of L-presented groupsMax Horn

Quotient algorithms

- Every finitely presented group $\langle X \mid S\rangle$ is finitely L-presented, e.g. as $\langle X| S|\emptyset| \emptyset\rangle$ or as $\langle X| \emptyset|\emptyset| S\rangle$.
- There are interesting groups which are not finitely presented but admit finite L-presentations.
- The Grigorchuk group arose as a counterexample to the Burnside problem and has very interesting properties.
... 2-group, amenable, automatic, intermediate growth, just infinite, residually finite...
- The Basilica group is an example with easy description.amenable, automatic, exponential growth, just non-solvable ...

$$
\left.\langle a, b| \emptyset\left|(a, b) \mapsto\left(b^{2}, a\right)\right|\left[a, b^{-1} a b\right]\right\rangle
$$

Overview

Polycyclic quotients of L-presented groups

Max Horn
(1) Quotient algorithms

Quotient
algorithms
L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

(2) L-presented groups
(3) Polycyclic quotient algorithm

4 Gröbner bases in group rings

(5) Two examples

Quotient algorithm: Overview

Polycyclic

quotients of
L-presented groups

Max Horn

Quotient algorithms

Steps of polycyclic quotient algorithm:

- Input: group G, positive integer c
- Output: polycyclic pres. of $G / G^{(c)}$ if it exists, or an error (recall $G^{(0)}:=G, G^{(i+1)}:=\left[G^{(i)}, G^{(i)}\right]$)
- Also computes effective epimorphism $\psi_{c}: G \rightarrow G / G^{(c)}$.

Use an inductive approach:

- Start with the trivial epimorphism $\psi_{0}: G \rightarrow 1=G / G^{(0)}$.
- Repeatedly run extension algorithm: Extend effective epimorphism $\psi_{i}: G \rightarrow G / G^{(i)}$, to $\psi_{i+1}: G \rightarrow G / G^{(i+1)}$ and determine polycyclic presentation of $G / G^{(i+1)}$, if any, or an error.

Extension algorithm: Overview

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings Two examples

Input:

- An L-presented G and a polycyclic presented H;
- An effective epimorphism $\psi: G \rightarrow H$ with kernel N;
- A description for a subgroup $U \unlhd H$.

```
Set M:= [ }\mp@subsup{\psi}{}{-1}(U),N
\(U=1 \Longrightarrow M=N^{\prime} \leadsto\) polycyclic quotients.
\(U=H \Longrightarrow M=[G, N] \leadsto\) nilpotent quotients
From now on \(U=1\) and \(M=N^{\prime}\)
```

Output

- Check whether G/M is polycyclic, and, if so, then
- an effective epimorphism $\nu: G \rightarrow K$ with kernel M and polycyclic presentation for K

Extension algorithm: Overview

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Input:

- An L-presented G and a polycyclic presented H;
- An effective epimorphism $\psi: G \rightarrow H$ with kernel N;
- A description for a subgroup $U \unlhd H$.

$$
\text { Set } M:=\left[\psi^{-1}(U), N\right] \text {. }
$$

$U=1 \Longrightarrow M=N^{\prime} \leadsto$ polycyclic quotients.
$U=H \Longrightarrow M=[G, N] \leadsto$ nilpotent quotients.
From now on $U=1$ and $M=N^{\prime}$

Output

- Check whether G/M is polycyclic, and, if so, then
- an effective epimorphism $\nu: G \rightarrow K$ with kernel M and polycyclic presentation for K

Extension algorithm: Overview

Polycyclic

 quotients of L-presented groupsMax Horn

Quotient algorithms

Polycyclic quotient algorithm

Input:

- An L-presented G and a polycyclic presented H;
- An effective epimorphism $\psi: G \rightarrow H$ with kernel N;
- A description for a subgroup $U \unlhd H$.

Set $M:=\left[\psi^{-1}(U), N\right]$.
$U=1 \Longrightarrow M=N^{\prime} \leadsto$ polycyclic quotients.
$U=H \Longrightarrow M=[G, N] \sim$ nilpotent quotients.
From now on $U=1$ and $M=N^{\prime}$
Output

- Check whether G/M is polycyclic, and, if so, then
- an effective epimorphism $\nu: G \rightarrow K$ with kernel M and polycyclic presentation for K.

Extension algorithm: Overview

Polycyclic

 quotients of L-presented groupsMax Horn

Quotient algorithms

Input:

- An L-presented G and a polycyclic presented H;
- An effective epimorphism $\psi: G \rightarrow H$ with kernel N;
- A description for a subgroup $U \unlhd H$.

Set $M:=\left[\psi^{-1}(U), N\right]$.
$U=1 \Longrightarrow M=N^{\prime} \leadsto$ polycyclic quotients.
$U=H \Longrightarrow M=[G, N] \leadsto$ nilpotent quotients.
From now on $U=1$ and $M=N^{\prime}$.

- Check whether G / M is polycyclic, and, if so, then
- an effective epimorphism $\nu: G \rightarrow K$ with kernel M and polycyclic presentation for K.

Extension algorithm: Overview

Polycyclic

 quotients ofL-presented groups

Max Horn

Quotient algorithms

Input:

- An L-presented G and a polycyclic presented H;
- An effective epimorphism $\psi: G \rightarrow H$ with kernel N;
- A description for a subgroup $U \unlhd H$.

Set $M:=\left[\psi^{-1}(U), N\right]$.
$U=1 \Longrightarrow M=N^{\prime} \leadsto$ polycyclic quotients.
$U=H \Longrightarrow M=[G, N] \sim$ nilpotent quotients.
From now on $U=1$ and $M=N^{\prime}$.

Output:

- Check whether G / M is polycyclic, and, if so, then
- an effective epimorphism $\nu: G \rightarrow K$ with kernel M and polycyclic presentation for K.

Extension algorithm: Overview (cont.)

Polycyclic
quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented
groups
Polycyclic quotient algorithm

Gröbner bases in group rings Two examples

- N / M is a (right) $\mathbb{Z} H$-module.
- K is an extension of N / M by H.

Extension algorithm: Overview (cont.)

Polycyclic
quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings Two examples

- N / M is a (right) $\mathbb{Z} H$-module.
- K is an extension of N / M by H.

Steps:
(1) Compute finite $\mathbb{Z} H$-module presentation for N / M.
(2) Check whether N / M has finite \mathbb{Z}-rank ($\Leftrightarrow K$ is polycyclic), and, if so, then
(3) determine generators for N / M as abelian group; extend N / M by H to K and ψ to ν.

Extension algorithm: Overview (cont.)

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms L-presented groups

Polycyclic quotient algorithm

- N / M is a (right) $\mathbb{Z} H$-module.
- K is an extension of N / M by H.

Steps:

(1) Compute finite $\mathbb{Z H}$-module presentation for N / M.
(2) Check whether N / M has finite \mathbb{Z}-rank ($\Leftrightarrow K$ is polycyclic), and, if so, then
O determine generators for N / M as abelian group; extend N / M by H to K and ψ to ν.

Extension algorithm: Overview (cont.)

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms L-presented groups

Polycyclic quotient algorithm

Steps:

(1) Compute finite $\mathbb{Z H}$-module presentation for N / M.
(2) Check whether N / M has finite \mathbb{Z}-rank ($\Leftrightarrow K$ is polycyclic), and, if so, then
(3) determine generators for N / M as abelian group; extend N / M by H to K and ψ to ν.

Extension algorithm: Step 1

Polycyclic
quotients of L-presented groups

Max Horn

Quotient
algorithms
L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Step 1: Compute a finite $\mathbb{Z} H$-module presentation for N / M.

- $N / M \cong V / W$ for a free $\mathbb{Z} H$-module V of finite rank and a submodule W.
- W is determined by the relations of G, plus $\psi: G \rightarrow H$.
- Problem: Infinitely many relators: $Q \cup \bigcup_{\sigma \in \phi^{*}} \sigma(R)$.
- But we can filter the relators by length of σ, this yields an ascending chain of submodules $W_{1} \subseteq W_{2} \subseteq \ldots \subseteq W$.
- $\mathbb{Z} H$-modules are Noetherian (as H is polycyclic), hence $\exists n \in \mathbb{N}$, such that $W_{n}=W_{n+1}=W_{n+2}=\ldots=W$

Extension algorithm: Step 1

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

Polycyclic quotient algorithm

Step 1: Compute a finite $\mathbb{Z} H$-module presentation for N / M.

- $N / M \cong V / W$ for a free $\mathbb{Z} H$-module V of finite rank and a submodule W.
- W is determined by the relations of G, plus $\psi: G \rightarrow H$.
- Problem: Infinitely many relators: $Q \cup \bigcup_{\sigma \in \phi^{*}} \sigma(R)$
- But we can filter the relators by length of σ, this yields an ascending chain of submodules $W_{1} \subseteq W_{2} \subseteq \ldots \subseteq W$.
- $\mathbb{Z} H$-modules are Noetherian (as H is polycyclic), hence $\exists n \in \mathbb{N}$, such that $W_{n}=W_{n+1}=W_{n+2}=\ldots=W$.

Extension algorithm: Step 1

Polycyclic quotients of L-presented groups

Max Horn

Quotient

 algorithmsPolycyclic quotient algorithm

Step 1: Compute a finite $\mathbb{Z} H$-module presentation for N / M.

- $N / M \cong V / W$ for a free $\mathbb{Z} H$-module V of finite rank and a submodule W.
- W is determined by the relations of G, plus $\psi: G \rightarrow H$.
- Problem: Infinitely many relators: $Q \cup \bigcup_{\sigma \in \phi^{*}} \sigma(R)$.
- But we can filter the relators by length of σ, this yields an ascending chain of submodules $W_{1} \subseteq W_{2} \subseteq \ldots \subseteq W$
- $\mathbb{Z} H$-modules are Noetherian (as H is polycyclic), hence $\exists n \in \mathbb{N}$, such that $W_{n}=W_{n+1}=W_{n+2}=\ldots=W$.

Extension algorithm: Step 1

Polycyclic quotients of L-presented groups

Max Horn

Quotient

 algorithms
Step 1: Compute a finite $\mathbb{Z} H$-module presentation for N / M.

- $N / M \cong V / W$ for a free $\mathbb{Z} H$-module V of finite rank and a submodule W.
- W is determined by the relations of G, plus $\psi: G \rightarrow H$.
- Problem: Infinitely many relators: $Q \cup \bigcup_{\sigma \in \phi^{*}} \sigma(R)$.
- But we can filter the relators by length of σ, this yields an ascending chain of submodules $W_{1} \subseteq W_{2} \subseteq \ldots \subseteq W$.
- ZH-modules are Noetherian (as H is polycyclic), hence $\exists n \in \mathbb{N}$, such that $W_{n}=W_{n+1}=W_{n+2}=\ldots=W$.

Extension algorithm: Step 1

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

Step 1: Compute a finite $\mathbb{Z} H$-module presentation for N / M.

- $N / M \cong V / W$ for a free $\mathbb{Z} H$-module V of finite rank and a submodule W.
- W is determined by the relations of G, plus $\psi: G \rightarrow H$.
- Problem: Infinitely many relators: $Q \cup \bigcup_{\sigma \in \phi^{*}} \sigma(R)$.
- But we can filter the relators by length of σ, this yields an ascending chain of submodules $W_{1} \subseteq W_{2} \subseteq \ldots \subseteq W$.
- $\mathbb{Z} H$-modules are Noetherian (as H is polycyclic), hence $\exists n \in \mathbb{N}$, such that $W_{n}=W_{n+1}=W_{n+2}=\ldots=W$.

Extension algorithm: Steps 2 \& 3

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient
algorithms
L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Step 2: Is N / M finitely generated as abelian group?

- Compute Gröbner basis of W, use this to determine \mathbb{Z}-rank of V / W.
- For this, adapt methods by Lo and Madlener-Reinert.

Step 3: Finding group generators for $N / M \cong V / W$ and extending N / M by H to K and ψ to ν.

- Generators can be extracted from the Gröbner basis.
- Rest is tedious, but doable (linear algebra over integers)

Extension algorithm: Steps 2 \& 3

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

Step 2: Is N / M finitely generated as abelian group?

- Compute Gröbner basis of W, use this to determine \mathbb{Z}-rank of V / W.
- For this, adapt methods by Lo and Madlener-Reinert.

Extension algorithm: Steps 2 \& 3

Polycyclic
quotients of L-presented groups

Max Horn

Quotient algorithms

Polycyclic quotient algorithm

Step 2: Is N / M finitely generated as abelian group?

- Compute Gröbner basis of W, use this to determine Z-rank of V / W.
- For this, adapt methods by Lo and Madlener-Reinert.

Step 3: Finding group generators for $N / M \cong V / W$ and extending N / M by H to K and ψ to ν.

- Generators can be extracted from the Gröbner basis.
- Rest is tedious, but doable (linear algebra over integers)

Extension algorithm: Steps 2 \& 3

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

Step 2: Is N / M finitely generated as abelian group?

- Compute Gröbner basis of W, use this to determine \mathbb{Z}-rank of V / W.
- For this, adapt methods by Lo and Madlener-Reinert.

Step 3: Finding group generators for $N / M \cong V / W$ and extending N / M by H to K and ψ to ν.

- Generators can be extracted from the Gröbner basis.
- Rest is tedious, but doable (linear algebra over integers)

Extension algorithm: Steps 2 \& 3

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

Step 2: Is N / M finitely generated as abelian group?

- Compute Gröbner basis of W, use this to determine \mathbb{Z}-rank of V / W.
- For this, adapt methods by Lo and Madlener-Reinert.

Step 3: Finding group generators for $N / M \cong V / W$ and extending N / M by H to K and ψ to ν.

- Generators can be extracted from the Gröbner basis.
- Rest is tedious, but doable (linear algebra over integers).

Overview

Polycyclic quotients of L-presented groups

Max Horn
(1) Quotient algorithms

Quotient
algorithms
L-presented groups

Polycyclic quotient
(3) Polycyclic quotient algorithm algorithm

Gröbner bases in group rings
(4) Gröbner bases in group rings

(5) Two examples

Towards Gröbner bases in group rings

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

Group ring elements of $\mathbb{K} G$ are similar to polynomials.
Which properties are crucial for Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials.
(P2) Finite monomial set have a unique least common multiple
(P3) A total order \leq linearizaing \preceq (necessarily a well-order).
(P4) $g<x g$ and $f \leq g \Longrightarrow x f \leq x g$.
Allows reduction, syzygies, finiteness of Gröbner bases ...

Towards Gröbner bases in group rings

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

Group ring elements of $\mathbb{K} G$ are similar to polynomials.
Which properties are crucial for Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials. \leadsto Well partial order \preceq on group elements.
(P2) Finite monomial set have a unique least common multiple
(P3) A total order \leq linearizaing \preceq (necessarily a well-order).
(P4) $g<x g$ and $f \leq g \Longrightarrow x f \leq x g$.
Allows reduction, syzygies, finiteness of Gröbner bases ...

Towards Gröbner bases in group rings

Polycyclic

 quotients of L-presented groupsMax Horn

Quotient algorithms

Group ring elements of $\mathbb{K} G$ are similar to polynomials.
Which properties are crucial for Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials. \leadsto Well partial order \preceq on group elements.
(P2) Finite monomial set have a unique least common multiple \leadsto finite subsets of G with a common upper bound have a unique least common upper bound
(P3) A total order \leq linearizaing \preceq (necessarily a well-order).
(P4) $g-x g$ and $f \leq g \Longrightarrow x f \leq x g$.
Allows reduction, syzygies, finiteness of Gröbner bases ...

Towards Gröbner bases in group rings

Polycyclic

 quotients of L-presented groupsMax Horn

Quotient algorithms L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Group ring elements of $\mathbb{K} G$ are similar to polynomials.
Which properties are crucial for Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials. \leadsto Well partial order \preceq on group elements.
(P2) Finite monomial set have a unique least common multiple \leadsto finite subsets of G with a common upper bound have a unique least common upper bound
(P3) A total order \leq linearizaing \preceq (necessarily a well-order).
(P4) $g \preceq x g$ and $f \leq g \Longrightarrow x f \leq x g$.
Allows reduction, syzygies, finiteness of Gröbner bases ...

Gröbner bases in group rings II

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient
algorithm
Gröbner bases in group rings

Two examples

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly $(\operatorname{lm}(x f) \neq x \operatorname{lm}(f))!\sim$ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- Integer coefficients \leadsto complicates things further. ©

Gröbner bases in group rings II

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly $(\operatorname{lm}(x f) \neq x \operatorname{lm}(f))!\sim$ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- Integer coefficients \sim complicates things further. ©

Gröbner bases in group rings II

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly $(\operatorname{lm}(x f) \neq x \operatorname{lm}(f))!\sim$ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- Integer coefficients \sim complicates things further. ©

Gröbner bases in group rings II

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly $(\operatorname{lm}(x f) \neq x \operatorname{lm}(f))!\sim$ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- Integer coefficients \sim complicates things further. ©

Overview

Polycyclic quotients of L-presented groups

Max Horn

(1) Quotient algorithms

Quotient
algorithms
L-presented groups

Polycyclic quotient
(3) Polycyclic quotient algorithm algorithm

Gröbner bases in group rings

Two examples
(2) L-presented groups
4) Gröbner bases in group rings
(5) Two examples
\square
$4 \square>4$

Two examples

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms L-presented groups

Polycyclic
quotient
algorithm
Gröbner bases in group rings Two examples

$$
\begin{aligned}
G & :=\left\langle a, b \mid a^{4},\left(a^{-2} b\right)^{2},(b a b a b)^{-1} a b a\right\rangle \\
H & \left.:=\langle a, b| \emptyset\left|(a, b) \mapsto\left(b^{2}, a\right)\right|\left[a, b^{-1} a b\right]\right\rangle \text { (Basilica group) }
\end{aligned}
$$

$(\mathrm{LC}) \sim$ lower central series: abelian invariants of $\gamma_{(i)} / \gamma_{(i+1)}$
$(\mathrm{D}) \leadsto$ derived serives: abelian invariants of $G^{(i)} / G^{(i+1)}$

	G		H	
Step	(LC)	(D)	(LC)	(D)
1	$(2,4)$	$(2,4)$	$(0,0)$	$(0,0)$
2	(2)	$(0,0)$	(0)	$(0,0,0)$
3	(2)	()	(4)	$(2,2,0,0,0,0,0,0,0,0)$
4	(2)	()	(4)	$?$
5	(2)	()	$(4,4)$	$?$

Two examples

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms L-presented groups

G: An f.p. group; (LC): lower central series; (D): derived series.

Reaches the maximal solvable quotient of G after 3 steps along the derived series: it is polycyclic of Hirsch length 2. Along the lower central series, we will never reach the maximal solvable quotient, since all nilpotent quotients of G are finite.

	G		H	
Step	(LC)	(D)	(LC)	(D)
1	$(2,4)$	$(2,4)$	$(0,0)$	$(0,0)$
2	(2)	$(0,0)$	(0)	$(0,0,0)$
3	(2)	()	(4)	$(2,2,0,0,0,0,0,0,0,0)$
4	(2)	()	(4)	$?$
5	(2)	()	$(4,4)$	$?$

Two examples

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms L-presented groups

Polycyclic
quotient algorithm Gröbner bases in group rings Two examples
H : Basilica group; (LC): lower central series; (D): derived series.
We see that $H / H^{(3)}$ is polycyclic of Hirsch length 13.
On the other hand, $H / \gamma_{48}(H)$ has been determined by Bartholdi-Eick-Hartung: this has only Hirsch length 3.

	G		H	
Step	(LC)	(D)	(LC)	(D)
1	$(2,4)$	$(2,4)$	$(0,0)$	$(0,0)$
2	(2)	$(0,0)$	(0)	$(0,0,0)$
3	(2)	()	(4)	$(2,2,0,0,0,0,0,0,0,0)$
4	(2)	()	(4)	$?$
5	(2)	()	$(4,4)$	$?$

Outlook

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient
algorithms
L-presented
groups
Polycyclic quotient algorithm

- Many improvements and optimizations planned, especially for Gröbner basis computations:
- Adapting improvements from F_{4} algorithm. (And F_{5} ?)
- Exploit ideas from algorithms for \mathbb{Z}-lattice computations, such as Hermite-Normal-form algorithms, LLL-algorithm.
- Take advantage of parallelization.
- We will make our implementation available as a GAP share package in the future.

Polycyclic quotients of L－presented groups Max Horn

Quotient
algorithms
L－presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Gröbner bases in polynomial rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

Which properties are crucial Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?

$$
\begin{aligned}
& \text { (P1) Divisibility of monomials } \leadsto \text { a well partial order } \preceq \text {. } \\
& \text { (P2) Any finite monomial set has a unique least common } \\
& \text { multiple wrt. this partial order. } \\
& \text { (P3) A total order } \leq \text { on the monomials which is a linearization } \\
& \text { of } \preceq \leadsto \text { necessarily is a well-order. } \\
& \text { (P4) If } f, g, x \text { are monomials, then } f \leq g \text { implies } x f \leq x g \text {. } \\
& \text { - } \mathrm{P} 4 \leadsto \text { if } \operatorname{lm}(x f)=x \operatorname{lm}(f) \\
& \text { - } \mathrm{P} 1+\mathrm{P} 4 \leadsto \text { reduction } \\
& \text { - } \mathrm{P} 1+\mathrm{P} 3 \leadsto \text { finiteness of Gröbner bases }
\end{aligned}
$$

Gröbner bases in polynomial rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

Which properties are crucial Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials \leadsto a well partial order \preceq. Any finite monomial set has a unique least common multiple wrt. this partial order.
A total order \leq on the monomials which is a linearization of $\preceq \sim$ necessarily is a well-order. If f, g, x are monomials, then $f \leq g$ implies $x f \leq x g$

- P4 \sim if $\operatorname{Im}(x f)=x \operatorname{lm}(f)$
- $\mathrm{P} 1+\mathrm{P} 4 \sim$ reduction
- P1+P3 ~ finiteness of Gröbner bases

Gröbner bases in polynomial rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

Which properties are crucial Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials \leadsto a well partial order \preceq.
(P2) Any finite monomial set has a unique least common multiple wrt. this partial order.
(P3) A total order \leq on the monomials which is a linearization of $\preceq \leadsto$ necessarily is a well-order.
(P4) If f, g, x are monomials, then $f \leq g$ implies $x f \leq x g$

- P4 \sim if $\operatorname{Im}(x f)=x \operatorname{lm}(f)$
- P1+P4 \sim reduction
- P1+P3 ~ finiteness of Gröbner bases

Gröbner bases in polynomial rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

Which properties are crucial Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials \leadsto a well partial order \preceq.
(P2) Any finite monomial set has a unique least common multiple wrt. this partial order.
(P3) A total order \leq on the monomials which is a linearization of $\preceq \sim$ necessarily is a well-order.
(P4) If f, g, x are monomials, then $f \leq g$ implies $x f \leq x g$

- P4 ~if $\operatorname{Im}(x f)=x \operatorname{lm}(f)$
- $\mathrm{P} 1+\mathrm{P} 4 \sim$ reduction
- P1+P3~finiteness of Gröbner bases

Gröbner bases in polynomial rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

Which properties are crucial Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials \leadsto a well partial order \preceq.
(P2) Any finite monomial set has a unique least common multiple wrt. this partial order.
(P3) A total order \leq on the monomials which is a linearization of $\preceq \sim$ necessarily is a well-order.
(P4) If f, g, x are monomials, then $f \leq g$ implies $x f \leq x g$.

- P4 \sim if $\operatorname{Im}(x f)=x \operatorname{Im}(f)$
- $\mathrm{P} 1+\mathrm{P} 4 \sim$ reduction
- P1+P3 \sim finiteness of Gröbner bases

Gröbner bases in polynomial rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

Which properties are crucial Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials \leadsto a well partial order \preceq.
(P2) Any finite monomial set has a unique least common multiple wrt. this partial order.
(P3) A total order \leq on the monomials which is a linearization of $\preceq \sim$ necessarily is a well-order.
(P4) If f, g, x are monomials, then $f \leq g$ implies $x f \leq x g$.

- P4 \sim if $\operatorname{Im}(x f)=x \operatorname{lm}(f)$
- $\mathrm{P} 1+\mathrm{P} 4 \sim$ reduction
- P1 +P3 \sim finiteness of Gröbner bases

Gröbner bases in polynomial rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

Which properties are crucial Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials \leadsto a well partial order \preceq.
(P2) Any finite monomial set has a unique least common multiple wrt. this partial order.
(P3) A total order \leq on the monomials which is a linearization of $\preceq \sim$ necessarily is a well-order.
(P4) If f, g, x are monomials, then $f \leq g$ implies $x f \leq x g$.

- P4 ~if $\operatorname{Im}(x f)=x \operatorname{lm}(f)$
- P1+P4 \sim reduction
- P1+P3 ~ finiteness of Gröbner bases

Gröbner bases in polynomial rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

Which properties are crucial Gröbner bases in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$?
(P1) Divisibility of monomials \leadsto a well partial order \preceq.
(P2) Any finite monomial set has a unique least common multiple wrt. this partial order.
(P3) A total order \leq on the monomials which is a linearization of $\preceq \sim$ necessarily is a well-order.
(P4) If f, g, x are monomials, then $f \leq g$ implies $x f \leq x g$.

- P4 ~if $\operatorname{Im}(x f)=x \operatorname{lm}(f)$
- $\mathrm{P} 1+\mathrm{P} 4 \sim$ reduction
- P1+P3 \sim finiteness of Gröbner bases

Towards Gröbner bases in group rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic quotient algorithm

Gröbner bases in group rings

Two examples

Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order \preceq and a total order \leq is a reduction group if

```
R1) \preceq is a well partial order,
    finite subsets of G with a common upper bound have a
    unique least common upper bound,
    \leq extends \preceq linearly, and
    for all }x,f,g\inG\mathrm{ , if }g\preceqxg\mathrm{ and }f\leqg\mathrm{ then xf}\leqx
    - R4~ if g}\preceqxg\mathrm{ then Im (xg) =x Im(g)
    - R1+R4 }~\mathrm{ reduction
    e R1+R3 ~ finiteness of Gröbner bases
```

 Polycyclic groups are reduction groups!

Towards Gröbner bases in group rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

Definition (Lo; Madlener-Reinert (mid-90s))
A group G with a partial order \preceq and a total order \leq is a reduction group if
(R1) \preceq is a well partial order,
finite subsets of G with a common upper bound have a unique least common upper bound, \leq extends \prec linearly, and for all $x, f, g \in G$, if $g \preceq x g$ and $f \leq g$ then $x f \leq x g$

- R4~if $g \preceq x g$ then $\operatorname{Im}(x g)=x \operatorname{Im}(g)$
- R1+R4 \sim reduction
- R1+R3 \sim finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Towards Gröbner bases in group rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order \preceq and a total order \leq is a reduction group if
(R1) \preceq is a well partial order,
(R2) finite subsets of G with a common upper bound have a unique least common upper bound,

for all $x, f, g \in G$, if $g \preceq x g$ and $f \leq g$ then $x f \leq x g$

- R4 \leadsto if $g \preceq x g$ then $\operatorname{Im}(x g)=x \operatorname{Im}(g)$
- R1+R4 ~ reduction
- R1+R3 ~ finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Towards Gröbner bases in group rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic
quotient
algorithm
Gröbner bases in group rings

Two examples

Definition (Lo; Madlener-Reinert (mid-90s))
A group G with a partial order \preceq and a total order \leq is a reduction group if
(R1) \preceq is a well partial order,
(R2) finite subsets of G with a common upper bound have a unique least common upper bound,
(R3) \leq extends \preceq linearly, and
for all $x, f, g \in G$, if $g \preceq x g$ and $f \leq g$ then $x f \leq x g$.

- R4 \leadsto if $g \preceq x g$ then $\operatorname{Im}(x g)=x \operatorname{Im}(g)$
- R1+R4 \sim reduction
- R1+R3 ~ finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Towards Gröbner bases in group rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic
quotient
algorithm
Gröbner bases in group rings

Two examples

Definition (Lo; Madlener-Reinert (mid-90s))
A group G with a partial order \preceq and a total order \leq is a reduction group if
(R1) \preceq is a well partial order,
(R2) finite subsets of G with a common upper bound have a unique least common upper bound,
(R3) \leq extends \preceq linearly, and
(R4) for all $x, f, g \in G$, if $g \preceq x g$ and $f \leq g$ then $x f \leq x g$.

- R4 if $g \preceq x g$ then $\operatorname{Im}(x g)=x \operatorname{Im}(g)$
- R1+R4 \sim reduction
- R1+R3 ~ finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Towards Gröbner bases in group rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Two examples

Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order \preceq and a total order \leq is a reduction group if
(R1) \preceq is a well partial order,
(R2) finite subsets of G with a common upper bound have a unique least common upper bound,
(R3) \leq extends \preceq linearly, and
(R4) for all $x, f, g \in G$, if $g \preceq x g$ and $f \leq g$ then $x f \leq x g$.

- R4 \sim if $g \preceq x g$ then $\operatorname{Im}(x g)=x \operatorname{Im}(g)$
- R1+R4 ~ reduction
- R1+R3 ~ finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Towards Gröbner bases in group rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings Two examples

Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order \preceq and a total order \leq is a reduction group if
(R1) \preceq is a well partial order,
(R2) finite subsets of G with a common upper bound have a unique least common upper bound,
(R3) \leq extends \preceq linearly, and
(R4) for all $x, f, g \in G$, if $g \preceq x g$ and $f \leq g$ then $x f \leq x g$.

- R4 \sim if $g \preceq x g$ then $\operatorname{Im}(x g)=x \operatorname{Im}(g)$
- R1+R4~reduction
- R1+R3 ~ finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Towards Gröbner bases in group rings

Polycyclic quotients of
L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings Two examples

Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order \preceq and a total order \leq is a reduction group if
(R1) \preceq is a well partial order,
(R2) finite subsets of G with a common upper bound have a unique least common upper bound,
(R3) \leq extends \preceq linearly, and
(R4) for all $x, f, g \in G$, if $g \preceq x g$ and $f \leq g$ then $x f \leq x g$.

- R4 \sim if $g \preceq x g$ then $\operatorname{Im}(x g)=x \operatorname{Im}(g)$
- R1+R4~reduction
- R1+R3 ~ finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Towards Gröbner bases in group rings

Polycyclic quotients of
L-presented groups

Max Horn

Quotient algorithms

L-presented groups

Polycyclic
quotient algorithm

Gröbner bases in group rings

Definition (Lo; Madlener-Reinert (mid-90s))

A group G with a partial order \preceq and a total order \leq is a reduction group if
(R1) \preceq is a well partial order,
(R2) finite subsets of G with a common upper bound have a unique least common upper bound,
(R3) \leq extends \preceq linearly, and
(R4) for all $x, f, g \in G$, if $g \preceq x g$ and $f \leq g$ then $x f \leq x g$.

- R4 \sim if $g \preceq x g$ then $\operatorname{Im}(x g)=x \operatorname{Im}(g)$
- R1+R4 ~ reduction
- R1+R3 ~ finiteness of Gröbner bases

Polycyclic groups are reduction groups!

Gröbner bases in group rings

Polycyclic quotients of L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient
algorithm
Gröbner bases in group rings

Two examples

Definition

Let I be a left-ideal of a group ring. A Gröbner basis of I is a finite subset $B \subset I$ such that for any non-zero $f \in I$ there is $b \in B$ such that $\operatorname{Im}(b) \preceq \operatorname{Im}(f)$.

Theorem
 \square if and only if f reduces to zero modulo B

Corollary

Let B be a Gröbner basis of I. Then I is generated by B

Gröbner bases in group rings

Polycyclic quotients of
L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient
algorithm
Gröbner bases in group rings

Two examples

Definition

Let I be a left-ideal of a group ring. A Gröbner basis of I is a finite subset $B \subset I$ such that for any non-zero $f \in I$ there is $b \in B$ such that $\operatorname{Im}(b) \preceq \operatorname{Im}(f)$.

Theorem

Let B be a Gröbner basis of I. Then $f \in \mathbb{K} G$ is contained in I if and only if f reduces to zero modulo B.

Corollary

Let B be a Gröbner basis of I. Then I is generated by B

Gröbner bases in group rings

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient
algorithm
Gröbner bases in group rings

Two examples

Definition

Let I be a left-ideal of a group ring. A Gröbner basis of I is a finite subset $B \subset I$ such that for any non-zero $f \in I$ there is $b \in B$ such that $\operatorname{Im}(b) \preceq \operatorname{Im}(f)$.

Theorem

Let B be a Gröbner basis of I. Then $f \in \mathbb{K} G$ is contained in I if and only if f reduces to zero modulo B.

Corollary

Let B be a Gröbner basis of I. Then I is generated by B.

Gröbner bases in group rings II

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms
L-presented groups

Polycyclic
quotient algorithm

Cröbner bases in group rings

Two examples

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly $(\operatorname{lm}(x f) \neq x \operatorname{lm}(f))!\sim$ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- So far, coefficients were from a field. But we need integer coefficients \leadsto complicates things further. ©

Gröbner bases in group rings II

Polycyclic

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly $(\operatorname{lm}(x f) \neq x \operatorname{lm}(f))!\sim$ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- So far, coefficients were from a field. But we need integer coefficients \leadsto complicates things further. ©

Gröbner bases in group rings II

Polycyclic
quotients of
L-presented groups

Max Horn

Quotient algorithms

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly $(\operatorname{lm}(x f) \neq x \operatorname{lm}(f))!\sim$ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- So far, coefficients were from a field. But we need integer coefficients \leadsto complicates things further. ©

Gröbner bases in group rings II

Polycyclic

- How to compute a Gröbner basis? Adapt Buchberger's algorithm!
- But watch out: Lead monomials can change unexpectedly $(\operatorname{lm}(x f) \neq x \operatorname{lm}(f))!\sim$ need to introduce additional "polynomials" during algorithm.
- One can adapt various improvements from the polynomial case, e.g. Gebauer-Möller criterion.
- So far, coefficients were from a field. But we need integer coefficients \sim complicates things further. ©

