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o An effective quotient map 7w : G — H is also computed,
i.e., allowing computation of images and preimages.

o H is ideally more tractable than G (e.g. finite or
nilpotent), yet should share interesting features of G.

o Development and implementation of quotients methods
for finitely presented groups have a long history.
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eorithms e maximal abelian quotients, i.e., G/G’
o finite p-group quotients (Newman and O’Brien)
o finite solvable quotients (Niemeyer; Briickner and Plesken)
@ nilpotent quotients (Nickel)
@ polycyclic quotients (Lo; most general in this sequence)
H is a polycyclic group

& H is solvable and all subgroups are finitely generated

< Jseries H=Hy>...> H, > 1 with H;/H;11 cyclic
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What is new?

Quotient
algorithms

o Extended input: L-presented, generalizing f.p.

o Flexibility: can compute polycylic, nilpotent, and
“intermediate” quotients (note: a nilpotent quotient
algorithm for L-presented due to Bartholdi, Eick and
Hartung already exists)

o Effectivity: new ideas to improve algorithm

Moreover, it can be used everywhere GAP 4 runs. In contrast,
Lo's algorithm is difficult to use on modern computers
(compilation issues, relies on GAP 3).
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groups - -
group on X. Let R and @ be finite subsets of F and ¢ a finite
set of endomorphisms of F. Then

Max Horn

L-presented <X | Q | ¢ | R>

groups

is called a (finite) L-presentation.

Denote by ¢* the monoid generated by ¢. Then the finite
L-presentation defines a group F/K, where

K=(QU U o(R)F < F.

oTEP*

F/K is a (finitely) L-presented group.
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p— o Every finitely presented group (X | S) is finitely
Max Horn L-presented, e.g. as (X | S |0 |0)oras (X |0]|0]S).

@ There are interesting groups which are not finitely
L presented presented but admit finite L-presentations.

groups
@ The Grigorchuk group arose as a counterexample to the
Burnside problem and has very interesting properties.

...2-group, amenable, automatic, intermediate growth, just infinite, residually finite. ..

@ The Basilica group is an example with easy description.

...amenable, automatic, exponential growth, just non-solvable ...

(a,b| 0| (a,b)—~ (b° a)|[a b "ab])
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Max Horn o Input: group G, positive integer ¢

@ Output: polycyclic pres. of G/G(C) if it exists, or an error
(recall GO) .= G, U+ .= [G(), GU)])

o Also computes effective epimorphism ¥, : G — G/G(C).

ot

algorithm Use an inductive approach:

o Start with the trivial epimorphism 1o : G = 1= G/G©).

@ Repeatedly run extension algorithm: Extend effective
epimorphism v; : G — G/G) to i1 : G — G/GUHD)
and determine polycyclic presentation of G/G(i+1), if any,
or an error.
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@ An L-presented G and a polycyclic presented H;
Max Horn

o An effective epimorphism v : G — H with kernel N;
@ A description for a subgroup U < H.

Set M := [¢~1(U), N].
atotent U=1 = M = N~ polycyclic quotients.

2lgerithm U=H = M =[G, N] ~ nilpotent quotients.
From nowon U =1 and M = N'.

Output:
o Check whether G/M is polycyclic, and, if so, then

o an effective epimorphism v : G — K with kernel M and
polycyclic presentation for K.
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o N/M is a (right) ZH-module.
[ @ K is an extension of N/M by H.

Max Horn

K=G/M

/ [
¢V sH-—anN

Polycyclic
quotient

By Steps:

© Compute finite ZH-module presentation for N/ M.

@ Check whether N/M has finite Z-rank (< K is
polycyclic), and, if so, then

© determine generators for N/M as abelian group;
extend N/M by H to K and ¢ to v.
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e o N/M = V/W for a free ZH-module V of finite rank and
a submodule W.

o W is determined by the relations of G, plus ¢ : G — H.

Polycyclic

quotient o Problem: Infinitely many relators: Q U J, ¢4 o(R).

algorithm

@ But we can filter the relators by length of o, this yields an
ascending chain of submodules Wy C W, C ... C W.

o ZH-modules are Noetherian (as H is polycyclic), hence
In €N, such that Wy = Wy = Wyso = ... = W.
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e e Step 2: Is N/M finitely generated as abelian group?

@ Compute Grobner basis of W, use this to determine
Z-rank of V/W.

o For this, adapt methods by Lo and Madlener-Reinert.

Polycyclic
quotient

algorithm Step 3: Finding group generators for N/M = V /W and
extending N/M by H to K and % to v.

@ Generators can be extracted from the Grobner basis.

o Rest is tedious, but doable (linear algebra over integers).
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(P1) Divisibility of monomials. ~ Well partial order < on group
elements.

(P2) Finite monomial set have a unique least common multiple
~ finite subsets of G with a common upper bound have a

Srobner bases unique least common upper bound

in group rings

(P3) A total order < linearizaing < (necessarily a well-order).
(P4) g <= xgand f<g = xf <xg.

Allows reduction, syzygies, finiteness of Grobner bases . ..




Grobner bases in group rings |l

Polycyclic
quotients of
L-presented

groups

Max Horn o How to compute a Grobner basis? Adapt Buchberger's
algorithm!

Grobner bases
in group rings



Grobner bases in group rings |l

Polycyclic
quotients of
L-presented

groups

Max Horn o How to compute a Grobner basis? Adapt Buchberger's
algorithm!

o But watch out: Lead monomials can change unexpectedly
(Im(x f) # xIm(f))! ~ need to introduce additional
“polynomials” during algorithm.

Grobner bases
in group rings



Grobner bases in group rings |l

Polycyclic
quotients of
L-presented

groups

Max Horn o How to compute a Grobner basis? Adapt Buchberger's
algorithm!

o But watch out: Lead monomials can change unexpectedly
(Im(x f) # xIm(f))! ~ need to introduce additional
“polynomials” during algorithm.

Grobner bases

in group rings @ One can adapt various improvements from the polynomial
case, e.g. Gebauer-Moller criterion.



Grobner bases in group rings |l

Polycyclic
quotients of
L-presented
groups

Max Horn o How to compute a Grobner basis? Adapt Buchberger's
algorithm!

o But watch out: Lead monomials can change unexpectedly
(Im(x f) # xIm(f))! ~ need to introduce additional
“polynomials” during algorithm.

Grobner bases

in group rings @ One can adapt various improvements from the polynomial
case, e.g. Gebauer-Moller criterion.

o Integer coefficients ~» complicates things further. ®
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Two examples

EEE G = (a,b|a* (a7?b)2 (babab) taba)

quotients of
Sl H:=(a,b| 0| (a,b)— (b a)|[a, b ab]) (Basilica group)
MECHom (LC) ~ lower central series: abelian invariants of y(jy/7(i+1)

(D) ~ derived serives: abelian invariants of G()/G(+1)

G H
Step | (LC) [ (D) || (LO) (D)
1 | (24) ] (24) | (0,0) (0,0)
Two examples 2 (2) (0,0) (0) (0'010)
301 @ | 0 | 4 |(220000,0,000)
4 1@ 0 | @ !
5 | @ | O |(44)
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N Reaches the maximal solvable quotient of G after 3 steps along
the derived series: it is polycyclic of Hirsch length 2. Along the
lower central series, we will never reach the maximal solvable
quotient, since all nilpotent quotients of G are finite.

G: An f.p. group; (LC): lower central series; (D): derived series.

G H
Step | (LC) [ (D) || (LO) (D)
1 | (24) ] (24) | (0,0) (0,0)
Two examples 2 (2) (0,0) (0) (0'010)
301 @ | 0 | 4 |(220000,0,000)
4 1@ 0 | @ !
5 | @ | O |(44) !
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H: Basilica group; (LC): lower central series; (D): derived series.

groups

VEralp We see that H/H(3) is polycyclic of Hirsch length 13.

On the other hand, H/~ag(H) has been determined by Bartholdi-
Eick-Hartung: this has only Hirsch length 3.

G H
Step | (LC) [ (D) || (LO) (D)
1 | (24) ] (24) | (0,0) (0,0)
Two examples 2 (2) (0,0) (0) (0'010)
301 @ | 0 | 4 |(220000,0,000)
4 1@ 0 | @ !
5 | @ | O |(44) !
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Max Horn . .. . .
@ Many improvements and optimizations planned, especially

for Grobner basis computations:
o Adapting improvements from Fy algorithm. (And Fs?)

o Exploit ideas from algorithms for Z-lattice computations,
such as Hermite-Normal-form algorithms, LLL-algorithm.

o Take advantage of parallelization.

Two examples o We will make our implementation available as a GAP
share package in the future.



Polycyclic
quotients of
L-presented

groups

Max Horn

Two examples




Grobner bases in polynomial rings

Polycyclic
quotients of
L-presented

groups

Which properties are crucial Grobner bases in K[xi, ..., xa]?

Max Horn

Two examples



Grobner bases in polynomial rings

Polycyclic
quotients of
L-presented

groups

Which properties are crucial Grobner bases in K[xi, ..., xa]?

Max Horn
(P1) Divisibility of monomials ~ a well partial order <.

Two examples



Grobner bases in polynomial rings

Polycyclic
quotients of
L-presented

groups

Which properties are crucial Grobner bases in K[xi, ..., xa]?

Max Horn
(P1) Divisibility of monomials ~ a well partial order <.

(P2) Any finite monomial set has a unique least common
multiple wrt. this partial order.

Two examples



Grobner bases in polynomial rings

Polycyclic
quotients of

Sl Which properties are crucial Grobner bases in K[xi, ..., x,]?

groups

Max Horn
(P1) Divisibility of monomials ~ a well partial order <.

(P2) Any finite monomial set has a unique least common
multiple wrt. this partial order.

(P3) A total order < on the monomials which is a linearization
of < ~» necessarily is a well-order.

Two examples



Grobner bases in polynomial rings

Polycyclic
quotients of

Sl Which properties are crucial Grobner bases in K[xi, ..., x,]?

groups

Max Horn
(P1) Divisibility of monomials ~ a well partial order <.

(P2) Any finite monomial set has a unique least common
multiple wrt. this partial order.

(P3) A total order < on the monomials which is a linearization
of < ~» necessarily is a well-order.

(P4) If f, g, x are monomials, then f < g implies xf < xg.

Two examples



Polycyclic
quotients of
L-presented

groups

Max Horn

Two examples

Grobner bases in polynomial rings

(P1)
(P2)

(P3)

(P4)

Which properties are crucial Grobner bases in K[xi, ..., xa]?

Divisibility of monomials ~» a well partial order <.

Any finite monomial set has a unique least common
multiple wrt. this partial order.

A total order < on the monomials which is a linearization
of < ~» necessarily is a well-order.

If f,g,x are monomials, then f < g implies xf < xg.

P4 ~ if Im(x f) = xIm(f)
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Grobner bases in polynomial rings

(P1)
(P2)

(P3)

(P4)

Which properties are crucial Grobner bases in K[xi, ..., xa]?

Divisibility of monomials ~» a well partial order <.

Any finite monomial set has a unique least common
multiple wrt. this partial order.

A total order < on the monomials which is a linearization
of < ~» necessarily is a well-order.

If f,g,x are monomials, then f < g implies xf < xg.
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Which properties are crucial Grobner bases in K[xi, ..., xa]?

Divisibility of monomials ~» a well partial order <.

Any finite monomial set has a unique least common
multiple wrt. this partial order.

A total order < on the monomials which is a linearization
of < ~» necessarily is a well-order.

If f,g,x are monomials, then f < g implies xf < xg.

P4 ~ if Im(x f) = xIm(f)
P1+P4 ~ reduction
P1+4+P3 ~ finiteness of Grobner bases
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A group G with a partial order < and a total order < is a
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(R1) =< is a well partial order,

(R2) finite subsets of G with a common upper bound have a
unique least common upper bound,

(R3) < extends < linearly, and
(R4) for all x,f,g € G, if g = xg and f < g then xf < xg.

Two examples

o R4 ~ if g < xg then Im(x g) = xIm(g)
o R1+R4 ~ reduction
@ R1+R3 ~» finiteness of Grobner bases

Polycyclic groups are reduction groups!



Grobner bases in group rings

Polycyclic
quotients of
L-presented

groups

Definition

Max Horn

Let / be a left-ideal of a group ring. A Grobner basis of [ is a
finite subset B C / such that for any non-zero f € | there is
b € B such that Im(b) < Im(f).

Two examples



Grobner bases in group rings

Polycyclic
quotients of
L-presented

groups

Definition

Max Horn

Let / be a left-ideal of a group ring. A Grobner basis of [ is a
finite subset B C / such that for any non-zero f € | there is

b € B such that Im(b) < Im(f).

Theorem

Let B be a Grobner basis of I. Then f € KG is contained in |
if and only if f reduces to zero modulo B.

Two examples



Grobner bases in group rings

Polycyclic
quotients of
L-presented

groups

Definition

Max Horn

Let / be a left-ideal of a group ring. A Grobner basis of [ is a
finite subset B C / such that for any non-zero f € | there is

b € B such that Im(b) < Im(f).

Theorem

Let B be a Grobner basis of I. Then f € KG is contained in |
if and only if f reduces to zero modulo B.

Let B be a Grobner basis of I. Then | is generated by B. I

Two examples
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algorithm!
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o But watch out: Lead monomials can change unexpectedly
(Im(x f) # xIm(f))! ~ need to introduce additional
“polynomials” during algorithm.

@ One can adapt various improvements from the polynomial
case, e.g. Gebauer-Moller criterion.

Two examples

@ So far, coefficients were from a field. But we need integer
coefficients ~ complicates things further. ®
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