Unitary forms of Kac-Moody groups

TECHNISCHE UNIVERSITÄT DARMSTADT

Cornell University Lie Seminar Spring 2009

February 20, 2009

Dipl.-Math. Max Horn Cornell University & TU Darmstadt mhorn@mathematik.tu-darmstadt.de

February 20, 2009 | TU Darmstadt | Max Horn | 1

Overview

- Finite groups of Lie type
- Kac-Moody groups over finite fields
- Unitary forms
- Geometry and group theory
- Phan theory: Presentations of groups
- Finiteness properties

Finite groups of Lie type

Starting point: (untwisted) finite groups of Lie type. These are essentially determined by

- 1. a (finite) field \mathbb{F}_q and
- 2. a (spherical) root system (more specifically, a root datum).

Example

 $G = SL_{n+1}(\mathbb{F}_q)$ corresponds to the root system of type A_n with this Coxeter diagram:

(This is also true for PSL_{n+1} und GL_{n+1} ; the notion of a root datum is needed to distinguish between them.)

SL₃ as an example; root groups

Let n = 2 and $G = SL_3(\mathbb{K})$. The associated root system Φ of type A_2 :

To each root $\rho \in \Phi$ a root group $U_{\rho} \cong (\mathbb{K}, +)$ of G is associated:

$$U_{lpha} = \left\langle \left(\begin{smallmatrix} 1 & * & 0 \\ 1 & 0 \\ 1 \end{smallmatrix}
ight
angle \right\rangle$$
, $U_{eta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & * \\ 1 \end{smallmatrix}
ight
angle
ight
angle$, $U_{lpha+eta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & * \\ 1 & 0 \\ 1 \end{smallmatrix}
ight
angle
ight
angle$, $U_{-lpha} = {}^{\mathcal{T}} U_{lpha}^{-1}$, ...

The root groups, the (commutator) relations between them and the torus $T := \bigcap_{\rho \in \Phi} N_G(U_\rho)$ (diagonal matrices in G) determine G completely.

Rank 1 and rank 2 subgroups

Let G be an (untwisted) finite group of Lie type with root system Φ . Let Π be a fundamental system of Φ .

For $\alpha \in \Pi$ we call $G_{\alpha} := \langle U_{\alpha}, U_{-\alpha} \rangle$ a rank 1 subgroup.

For $\alpha, \beta \in \Pi$ with $\beta \neq \pm \alpha$ we call $G_{\alpha\beta} := \langle G_{\alpha}, G_{\beta} \rangle$ a rank 2 subgroup. Example

Let $G = SL_{n+1}$.

- ▶ rank 1 subgroups: block diagonal SL₂s
- ▶ rank 2 subgroups: block diagonal SL₃s or (SL₂ × SL₂)s

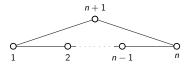
Kac-Moody groups over finite fields

(Split) Kac-Moody groups over finite fields generalize (untwisted) finite groups of Lie type in a natural way. Take the following ingredients:

- 1. a (finite) field $\mathbb K$ and
- 2. a root system (root datum) whose Coxeter diagram has edge labels in $\{3, 4, 6, 8, \infty\}$.

Example

 $G = SL_{n+1}(\mathbb{F}_q[t, t^{-1}])$ is a Kac-Moody group over \mathbb{F}_q with root system of type \widetilde{A}_n :



 $(\mathbb{F}_q[t, t^{-1}] \text{ is the ring of Laurent polynomials over } \mathbb{F}_q.)$

Again: need root data to distinguish SL from PSL and GL.

Root groups in Kac-Moody groups

To obtain the root system of type \tilde{A}_n we add a new root corresponding to the lowest root in A_n . For n = 3, we get a new root γ corresponding to $-\alpha - \beta$.

The positive fundamental root groups now are the following:

$$U_{\alpha} = \left\langle \left(\begin{smallmatrix} 1 & a & 0 \\ 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F}_{q} \right\rangle, U_{\beta} = \left\langle \left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & a \\ 1 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F}_{q} \right\rangle, U_{\gamma} = \left\langle \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \\ at & 0 & 1 \end{smallmatrix}\right) \mid a \in \mathbb{F}_{q} \right\rangle.$$

The negative root groups can be obtained from the positive ones by applying the Chevalley involution of G: Transpose, invert and swap t and t^{-1} , hence

$$U_{-\gamma} = \left\langle \left(egin{smallmatrix} 1 & 0 & -at^{-1} \ 1 & 0 \ 1 \end{array}
ight) \mid a \in \mathbb{F}_q
ight
angle.$$

G is generated by its root groups.

Unitary forms

- Let G be a Kac-Moody group over \mathbb{F}_{q^2} .
- Let θ be the composition of the Chevalley involution of G with the field involution σ of \mathbb{F}_{q^2} . For matrix groups:

$$\theta: x \mapsto (\sigma(x)^T)^{-1}$$

• Then $K := \operatorname{Fix}_{G}(\theta)$ is called unitary form of G.

Examples

• $G = SL_{n+1}(\mathbb{F}_{q^2})$, then $K = SU_{n+1}(\mathbb{F}_q)$.

•
$$G = \operatorname{Sp}_{2n}(\mathbb{F}_{q^2})$$
, then $K = \operatorname{Sp}_{2n}(\mathbb{F}_q)$.

• $G = SL_{n+1}(\mathbb{F}_{q^2}[t, t^{-1}])$, then K =

Geometry: buildings

Buildings are ...

- ▶ ... geometries for algebraic, Kac-Moody, Lie type and other groups.
 Example: The projective space Pⁿ(K) for G = SL_{n+1}(K).
- ... isomorphic to a simplicial complex, thus have topological realization.
- ... isomorphic to the homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive (fundamental) root groups.

Example: For $G = SL_{n+1}(\mathbb{K})$,

- \blacktriangleright U is the group of unit upper triangular matrices and
- ► *B* is the group of upper triangular matrices.
- ... are versatile and can be interpreted in many ways (chamber systems, CAT(0)-spaces, ...)

Careful: One group may act on several buildings. Only the choice of a system of root groups resp. the group B determines the building.

Why are buildings useful?

They further our understanding of their groups.

- Each automorphism of a connected reductive algebraic or Kac-Moody group of rank at least 2 is induced by an automorphism of the building (Tits; Caprace-Mühlherr).
- Analogously for the automorphisms of the unitary forms of Kac-Moody groups (Kac-Peterson; Caprace; Gramlich-Mars).
- ▶ Representation theory: For algebraic and Lie type groups the building *G*/*B* is a wedge of spheres and the Steinberg representation is obtained by the action of *G* on the highest non-trivial homology group of *G*/*B* (Solomon-Tits).
- ... more in the following

Borel groups and automorphisms

Let Δ_+ be a building of a finite group of Lie type G, viewed as a simplicial complex.

- ► Then the Borel subgroup B (recall $B = N_G(U)$ where U is generated by all positive root groups) is the stabilizer of a maximal simplex in Δ .
- Thus G/B is isomorphic to the set of all maximal chambers in Δ. The simplicial complex can be reconstructed from this.
- This allows passage from group automorphisms to building automorphisms: If θ maps B to a conjugate of B, this induces an isometry of the building.
- ▶ In fact, every automorphism of *G* has this property.

Tits' lemma

Theorem (Tits' lemma)

Let G be a group acting transitively on a simplicial complex Δ , let σ be a maximal simplex in Δ . Then Δ is simply connected if and only if G is presented by the generators and relations contained in the stabilizers of non-empty faces of σ .

Example

- $G = SL_{n+1}(\mathbb{K}), \Delta = \mathbb{P}^n(\mathbb{K})$
- G acts transitively on its building Δ (if $\mathbb{K} \neq \mathbb{F}_2$), which is simply connected.
- ▶ maximal simplex: the flag $\langle e_1 \rangle$, $\langle e_1, e_2 \rangle$, ... , $\langle e_1, ... , e_n \rangle$

Phan type theorems

Theorem

Let G be a finite group of Lie type over \mathbb{F}_{q^2} and let K be its unitary form. If q is sufficiently large, then the relations contained in the rank 2 subgroups

$$K_{\alpha\beta}:=G_{\alpha\beta}\cap K$$

are sufficient for a presentation of G by generators and relations. Example

- ▶ $G = \mathsf{SL}_{n+1}(\mathbb{F}_{q^2}), \ K = \mathsf{SU}_{n+1}(\mathbb{F}_q), \ \mathsf{type} \ A_n$
- ▶ rank 1 subgroups: block diagonal SU₂s
- ▶ rank 2 subgroups: block diagonal SU₃s resp. $(SU_2 \times SU_2)s$

Ingredient of the (revised) classification of finite simple groups: Used to "recognize" groups from a system of known subgroups.

February 20, 2009 | TU Darmstadt | Max Horn | 18

Phan type theorems: History of the proof(s)

Original proof: Computations in presentations.

A_n, D_n, E_n Phan (1977)

Phan program as part of the Gorenstein-Lyons-Solomon project:

Define suitable subgeometry C^{θ} of $\Delta(G)$ on which K acts transitively. Show that C^{θ} is simply connected. Apply Tits' lemma. Finally, need to classify certain subgroup amalgams.

 A_n, B_n, C_n, D_n Bennett, Gramlich, Hoffman, Shpectorov (2003-2007) E_n, F_4 Devillers, Gramlich, Hoffman, Mühlherr, Shpectorov (2005-2008)

Small cases Gramlich, H., Nickel (2005-2007)

- A_3/D_3 , q = 3: 9-fold (universal) cover exists
- B_3 , q = 3: 3^7 -fold (universal) cover exists
- ▶ $B_3, q \in \{5, 7, 8\}$; $C_3, q \in \{3, 4, 5, 7\}$; $C_4, q = 2$: Phan type theorem holds

Finiteness properties of G

- Let G be a Kac-Moody group over \mathbb{F}_{q^2} .
- Since G is generated by its fundamental root subgroups, it is finitely generated (finiteness length ≥ 1).
- Abramenko-Mühlherr (1997): If G is 2-spherical (all rank 2 subgroups are finite; more generally, no ∞ in the Coxeter diagram) and $q \ge 4$, then G is even finitely presented (finiteness length ≥ 2).
- Open problem: If G is *m*-spherical, is the finiteness length $\geq m$? What about the converse?

Which finiteness properties does the unitary form K possess?

Finiteness properties of K

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with twin building Δ and unitary form K.

Theorem (Gramlich, Mühlherr)

If q is sufficiently large, then K is a lattice (discrete subgroup with finite covolume) in $Isom(\Delta)$, the (locally compact) group of all isometries of Δ .

Corollary

If $q^2 > \frac{1}{25}1764^n$ and G is 2-spherical, then K is finitely generated.

Sketch of proof.

Dymara-Januszkiewicz (2002): If $q^2 > \frac{1}{25}1764^n$, then $Isom(\Delta)$ has Kazhdan's property (T). Kazhdan's theorem plus lattice property implies that K also has property (T). But groups with property (T) are compactly generated, and K is discrete, hence finitely generated.

 \rightarrow Deep, non-elementary methods and a rather coarse bound.

Unitary forms are finitely generated

Theorem (Gramlich, H., Mühlherr, 2008)

Let G be a 2-spherical Kac-Moody group over a finite field \mathbb{F}_q , $q \ge 5$, and no fundamental rank 2 subgroup is isomorphic to $G_2(\mathbb{F}_q)$. Suppose θ is an involutory automorphism which interchanges the two conjugacy classes of Borel subgroups. If q is odd or θ semi-linear, then $Fix_G(\theta)$ is finitely generated.

- Constant bound on q, does not depend on the rank n
- ▶ Restriction on G₂ residues: work in progress (H., Van Maldeghem)
- Works for almost arbitrary involutory automorphisms, with a price: q must be odd (or θ must be restricted again)
- Applies to other groups with root group datum, too

Unitary forms are finitely generated: Sketch of proof

- 1. Define a suitable subcomplex C^{θ} of the building (flip-flop system) such that $\mathcal{K}.C^{\theta} \subseteq C^{\theta}.$
- 2. Choose a system X of representatives of the K-orbits on the maximal simplices in C^{θ} .
- 3. Show: C^{θ} is pure and path connected. For this each possible rank 2 case is studied separately (H. and Van Maldeghem). Then apply a local to global argument.
- 4. For this reason, $G = \langle Stab_K(\sigma) \mid \sigma$ is non-empty face of $\sigma_0 \in X \rangle$.
- 5. Show: X is finite (follows from finiteness of maximal tori).
- 6. Show: Stabilizers in K of maximal simplices are finite.

Some more lattices

As a nice side effect of all this and some other results from my thesis, the lattice result by Gramlich-Mühlherr can be adapted in a similar fashion:

Theorem

Let G be a 2-spherical Kac-Moody group over a finite field \mathbb{F}_q , with q sufficiently large and no fundamental rank 2 subgroup is isomorphic to $G_2(\mathbb{F}_q)$. Suppose θ is an involutory automorphism which interchanges the two conjugacy classes of Borel subgroups. If q is odd or θ semi-linear, then $\operatorname{Fix}_G(\theta)$ is a lattice in $\operatorname{Isom}(\Delta)$.

References

Alice Devillers and Bernhard Mühlherr. On the simple connectedness of certain subsets of buildings. <i>Forum Math.</i> , 19:955–970, 2007.
Aloysius G. Helminck and Shu Ping Wang. On rationality properties of involutions of reductive groups. <i>Adv. Math.</i> , 99:26–96, 1993.
Max Horn. Involutions of Kac-Moody groups. PhD thesis, TU Darmstadt, 2008. → De Medts-Gramlich-H.: submitted; HVan Maldeghem plus Gramlich-HMühlherr: in preparation; H.: Oberwolfach report
Ralf Gramlich and Andreas Mars.

Isomorphisms of unitary forms of Kac-Moody groups over finite fields To appear in J. Algebra.