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Finite groups of Lie type

Starting point: (untwisted) finite groups of Lie type. These are essentially
determined by
1. a (finite) field Fq and
2. a (spherical) root system (more specifically, a root datum).

Example
G = SLn+1(Fq) corresponds to the root system of type An with this Coxeter
diagram:

1 2 n − 1 n

(This is also true for PSLn+1 und GLn+1; the notion of a root datum is needed to
distinguish between them.)
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SL3 as an example; root groups

Let n = 2 and G = SL3(K). The associated root system Φ of type A2:

α

α + ββ

−α

−α− β −β

To each root ρ ∈ Φ a root group Uρ
∼= (K, +) of G is associated:

Uα =
〈(

1 ∗ 0
1 0

1

)〉
, Uβ =

〈(
1 0 0

1 ∗
1

)〉
, Uα+β =

〈(
1 0 ∗

1 0
1

)〉
, U−α = TU−1

α , ...

The root groups, the (commutator) relations between them and the torus
T :=

⋂
ρ∈Φ NG (Uρ) (diagonal matrices in G ) determine G completely.
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Rank 1 and rank 2 subgroups

Let G be an (untwisted) finite group of Lie type with root system Φ. Let Π be a
fundamental system of Φ.

For α ∈ Π we call Gα := 〈Uα, U−α〉 a rank 1 subgroup.

For α,β ∈ Π with β 6= ±α we call Gαβ := 〈Gα, Gβ〉 a rank 2 subgroup.

Example
Let G = SLn+1.

I rank 1 subgroups: block diagonal SL2s
I rank 2 subgroups: block diagonal SL3s or (SL2 × SL2)s

February 20, 2009 | TU Darmstadt | Max Horn | 6



Kac-Moody groups over finite fields

(Split) Kac-Moody groups over finite fields generalize (untwisted) finite groups of
Lie type in a natural way. Take the following ingredients:
1. a (finite) field K and
2. a root system (root datum) whose Coxeter diagram has edge labels in
{3, 4, 6, 8,∞}.

Example
G = SLn+1(Fq[t, t−1]) is a Kac-Moody group over Fq with root system of type Ãn:

1 2 n − 1 n

n + 1

(Fq[t, t−1] is the ring of Laurent polynomials over Fq.)

Again: need root data to distinguish SL from PSL and GL.
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Root groups in Kac-Moody groups

To obtain the root system of type Ãn we add a new root corresponding to the
lowest root in An. For n = 3, we get a new root γ corresponding to −α− β.

The positive fundamental root groups now are the following:

Uα =
〈(

1 a 0
1 0

1

)
| a ∈ Fq

〉
, Uβ =

〈(
1 0 0

1 a
1

)
| a ∈ Fq

〉
, Uγ =

〈(
1
0 1
at 0 1

)
| a ∈ Fq

〉
.

The negative root groups can be obtained from the positive ones by applying the
Chevalley involution of G : Transpose, invert and swap t and t−1, hence

U−γ =
〈(

1 0 −at−1

1 0
1

)
| a ∈ Fq

〉
.

G is generated by its root groups.
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Unitary forms

I Let G be a Kac-Moody group over Fq2 .
I Let θ be the composition of the Chevalley involution of G with the field

involution σ of Fq2 . For matrix groups:

θ : x 7→ (σ(x)T )−1.

I Then K := FixG (θ) is called unitary form of G .

Examples
I G = SLn+1(Fq2 ), then K = SUn+1(Fq).
I G = Sp2n(Fq2 ), then K = Sp2n(Fq).
I G = SLn+1(Fq2 [t, t−1]), then K = ....
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Geometry: buildings

Buildings are . . .
I . . . geometries for algebraic, Kac-Moody, Lie type and other groups.

Example: The projective space Pn(K) for G = SLn+1(K).
I . . . isomorphic to a simplicial complex, thus have topological realization.
I . . . isomorphic to the homogeneous space G/B, where B = NG (U) and U is

generated by all positive (fundamental) root groups.
Example: For G = SLn+1(K),

I U is the group of unit upper triangular matrices and
I B is the group of upper triangular matrices.

I . . . are versatile and can be interpreted in many ways (chamber systems,
CAT (0)-spaces, . . . )

Careful: One group may act on several buildings. Only the choice of a system of
root groups resp. the group B determines the building.
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Why are buildings useful?

They further our understanding of their groups.

I Each automorphism of a connected reductive algebraic or Kac-Moody group
of rank at least 2 is induced by an automorphism of the building (Tits;
Caprace-Mühlherr).

I Analogously for the automorphisms of the unitary forms of Kac-Moody
groups (Kac-Peterson; Caprace; Gramlich-Mars).

I Representation theory: For algebraic and Lie type groups the building G/B is
a wedge of spheres and the Steinberg representation is obtained by the action
of G on the highest non-trivial homology group of G/B (Solomon-Tits).

I ... more in the following
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Borel groups and automorphisms

Let ∆+ be a building of a finite group of Lie type G , viewed as a simplicial
complex.

I Then the Borel subgroup B (recall B = NG (U) where U is generated by all
positive root groups) is the stabilizer of a maximal simplex in ∆.

I Thus G/B is isomorphic to the set of all maximal chambers in ∆. The
simplicial complex can be reconstructed from this.

I This allows passage from group automorphisms to building automorphisms: If
θ maps B to a conjugate of B, this induces an isometry of the building.

I In fact, every automorphism of G has this property.
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Tits’ lemma

Theorem (Tits’ lemma)
Let G be a group acting transitively on a simplicial complex ∆, let σ be a maximal
simplex in ∆. Then ∆ is simply connected if and only if G is presented by the
generators and relations contained in the stabilizers of non-empty faces of σ.

Example
I G = SLn+1(K), ∆ = Pn(K)

I G acts transitively on its building ∆ (if K 6= F2), which is simply connected.
I maximal simplex: the flag 〈e1〉 , 〈e1, e2〉 , ... , 〈e1, ... , en〉
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Phan type theorems

Theorem
Let G be a finite group of Lie type over Fq2 and let K be its unitary form.
If q is sufficiently large, then the relations contained in the rank 2 subgroups

Kαβ := Gαβ ∩ K

are sufficient for a presentation of G by generators and relations.

Example
I G = SLn+1(Fq2 ), K = SUn+1(Fq), type An

I rank 1 subgroups: block diagonal SU2s
I rank 2 subgroups: block diagonal SU3s resp. (SU2 × SU2)s

Ingredient of the (revised) classification of finite simple groups: Used to
“recognize” groups from a system of known subgroups.
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Phan type theorems: History of the proof(s)

I Original proof: Computations in presentations.
An, Dn, En Phan (1977)

I Phan program as part of the Gorenstein-Lyons-Solomon project:

Define suitable subgeometry Cθ of ∆(G ) on which K acts transitively. Show
that Cθ is simply connected. Apply Tits’ lemma. Finally, need to classify
certain subgroup amalgams.
An, Bn, Cn, Dn Bennett, Gramlich, Hoffman, Shpectorov (2003-2007)

En, F4 Devillers, Gramlich, Hoffman, Mühlherr, Shpectorov
(2005-2008)

Small cases Gramlich, H., Nickel (2005-2007)
I A3/D3, q = 3: 9-fold (universal) cover exists
I B3, q = 3: 37-fold (universal) cover exists
I B3, q ∈ {5, 7, 8}; C3, q ∈ {3, 4, 5, 7}; C4, q = 2: Phan type

theorem holds
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Finiteness properties of G

Let G be a Kac-Moody group over Fq2 .

Since G is generated by its fundamental root subgroups, it is finitely generated
(finiteness length ≥ 1).

Abramenko-Mühlherr (1997): If G is 2-spherical (all rank 2 subgroups are finite;
more generally, no ∞ in the Coxeter diagram) and q ≥ 4, then G is even finitely
presented (finiteness length ≥ 2).

Open problem: If G is m-spherical, is the finiteness length ≥ m? What about the
converse?

Which finiteness properties does the unitary form K possess?
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Finiteness properties of K

Let G be a non-spherical Kac-Moody group over Fq2 with twin building ∆ and
unitary form K .

Theorem (Gramlich, Mühlherr)
If q is sufficiently large, then K is a lattice (discrete subgroup with finite
covolume) in Isom(∆), the (locally compact) group of all isometries of ∆.

Corollary
If q2 > 1

25 1764n and G is 2-spherical, then K is finitely generated.

Sketch of proof.
Dymara-Januszkiewicz (2002): If q2 > 1

25 1764n, then Isom(∆) has Kazhdan’s
property (T ). Kazhdan’s theorem plus lattice property implies that K also has
property (T ). But groups with property (T ) are compactly generated, and K is
discrete, hence finitely generated.

→ Deep, non-elementary methods and a rather coarse bound.
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Unitary forms are finitely generated

Theorem (Gramlich, H., Mühlherr, 2008)
Let G be a 2-spherical Kac-Moody group over a finite field Fq, q ≥ 5, and no
fundamental rank 2 subgroup is isomorphic to G2(Fq). Suppose θ is an involutory
automorphism which interchanges the two conjugacy classes of Borel subgroups.
If q is odd or θ semi-linear, then FixG (θ) is finitely generated.

I Constant bound on q, does not depend on the rank n

I Restriction on G2 residues: work in progress (H., Van Maldeghem)
I Works for almost arbitrary involutory automorphisms, with a price: q must be

odd (or θ must be restricted again)
I Applies to other groups with root group datum, too
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Unitary forms are finitely generated:
Sketch of proof

1. Define a suitable subcomplex Cθ of the building (flip-flop system) such that
K .Cθ ⊆ Cθ.

2. Choose a system X of representatives of the K -orbits on the maximal
simplices in Cθ.

3. Show: Cθ is pure and path connected. For this each possible rank 2 case is
studied separately (H. and Van Maldeghem). Then apply a local to global
argument.

4. For this reason, G = 〈StabK (σ) | σ is non-empty face of σ0 ∈ X 〉 .

5. Show: X is finite (follows from finiteness of maximal tori).
6. Show: Stabilizers in K of maximal simplices are finite.
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Some more lattices

As a nice side effect of all this and some other results from my thesis, the lattice
result by Gramlich-Mühlherr can be adapted in a similar fashion:

Theorem
Let G be a 2-spherical Kac-Moody group over a finite field Fq, with q sufficiently
large and no fundamental rank 2 subgroup is isomorphic to G2(Fq). Suppose θ is
an involutory automorphism which interchanges the two conjugacy classes of Borel
subgroups. If q is odd or θ semi-linear, then FixG (θ) is a lattice in Isom(∆).
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