The geometry of involutions of algebraic groups and of Kac-Moody groups

TU Eindhoven
EIDMA Seminar Combinatorial Theory

July 1, 2009

Dipl.-Math. Max Horn
TU Darmstadt / TU Eindhoven
mhorn@mathematik.tu-darmstadt.de / mhorn@win.tue.nl
Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems
Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems
Chevalley groups: SL_{n+1}

Starting point: Chevalley groups. These are essentially determined by

1. a field \mathbb{F} and
2. a (spherical) root system (more specifically, a root datum).

Root systems can be described and classified by Dynkin diagrams.

Example

$G = SL_{n+1}(\mathbb{F})$ corresponds to root system of type A_n with this diagram:

![Dynkin diagram](image)

(This is also true for PSL_{n+1}; the notion of a root datum is needed to distinguish between them.)

For algebraically closed fields one obtains connected semi-simple linear algebraic groups; for finite fields (untwisted) finite groups of Lie type.
Chevalley groups: SL_{n+1}

Starting point: Chevalley groups. These are essentially determined by

1. a field \mathbb{F} and
2. a (spherical) root system (more specifically, a root datum).

Root systems can be described and classified by Dynkin diagrams.

Example

$G = SL_{n+1}(\mathbb{F})$ corresponds to root system of type A_n with this diagram:

![Dynkin diagram for A_n](image)

(This is also true for PSL_{n+1}; the notion of a root datum is needed to distinguish between them.)

For algebraically closed fields one obtains connected semi-simple linear algebraic groups; for finite fields (untwisted) finite groups of Lie type.
Starting point: Chevalley groups. These are essentially determined by

1. a field \mathbb{F} and
2. a (spherical) root system (more specifically, a root datum).

Root systems can be described and classified by Dynkin diagrams.

Example

$G = \text{SL}_{n+1}(\mathbb{F})$ corresponds to root system of type A_n with this diagram:

```
   1  2  ...  n-1  n
```

(This is also true for PSL_{n+1}; the notion of a root datum is needed to distinguish between them.)

For algebraically closed fields one obtains connected semi-simple linear algebraic groups; for finite fields (untwisted) finite groups of Lie type.
Let $n = 2$ and $G = \text{SL}_3(\mathbb{F})$. The associated root system Φ of type A_2:

\[
\begin{align*}
\beta & \quad \alpha + \beta \\
-\alpha & \quad \alpha \\
-\alpha - \beta & \quad -\beta
\end{align*}
\]

To each root $\rho \in \Phi$ a root group $U_\rho \cong (\mathbb{F}, +)$ of G is associated:

\[
\begin{align*}
U_\alpha &= \left\langle \begin{pmatrix} 1 & * & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \right\rangle, \\
U_\beta &= \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 1 & * & 1 \\ 1 & 0 & 1 \end{pmatrix} \right\rangle, \\
U_{\alpha + \beta} &= \left\langle \begin{pmatrix} 1 & 0 & * \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \right\rangle, \\
U_{-\alpha} &= (U_\alpha^T)^{-1}, \ldots
\end{align*}
\]

The root groups, the (commutator) relations between them and the torus $T := \bigcap_{\rho \in \Phi} N_G(U_\rho)$ (diagonal matrices in G) determine G completely.
Let $n = 2$ and $G = \text{SL}_3(\mathbb{F})$. The associated root system Φ of type A_2:

$$
\begin{align*}
\beta & \quad \alpha + \beta \\
-\alpha & \quad \alpha \\
-\alpha - \beta & \quad -\beta
\end{align*}
$$

To each root $\rho \in \Phi$ a root group $U_\rho \cong (\mathbb{F}, +)$ of G is associated:

$$
U_\alpha = \left\langle \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle, U_\beta = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle, U_{\alpha + \beta} = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle, U_{-\alpha} = (U_\alpha)^{-1}, ...
$$

The root groups, the (commutator) relations between them and the torus $T := \bigcap_{\rho \in \Phi} N_G(U_\rho)$ (diagonal matrices in G) determine G completely.
Let \(n = 2 \) and \(G = \text{SL}_3(\mathbb{F}) \). The associated root system \(\Phi \) of type \(A_2 \):

\[
\begin{align*}
\beta &\quad \alpha + \beta \\
-\alpha &\quad \alpha \\
-\alpha - \beta &\quad -\beta
\end{align*}
\]

To each root \(\rho \in \Phi \) a root group \(U_\rho \cong (\mathbb{F}, +) \) of \(G \) is associated:

\[
U_\alpha = \left\langle \begin{pmatrix} 1 & * & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\rangle, \quad U_\beta = \left\langle \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\rangle, \quad U_{\alpha + \beta} = \left\langle \begin{pmatrix} 1 & 0 & * \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\rangle, \quad U_{-\alpha} = (U_\alpha^T)^{-1}, \ldots
\]

The root groups, the (commutator) relations between them and the torus \(T := \bigcap_{\rho \in \Phi} N_G(U_\rho) \) (diagonal matrices in \(G \)) determine \(G \) completely.
Kac-Moody groups generalize Chevalley groups in a natural way. Again take . . .

1. a field \mathbb{F} and

2. a root system (root datum) whose Dynkin diagram has edge labels in \{3, 4, 6, 8, ∞\}.

(Again: need root datum, not just root system, to distinguish SL from PSL.)

Example

Let $\mathbb{F}[t, t^{-1}]$ denote the ring of Laurent polynomials over \mathbb{F}. $G = \text{SL}_{n+1}(\mathbb{F}[t, t^{-1}])$ is a Kac-Moody group over \mathbb{F} with root system of type $\widetilde{\mathbb{A}}_n$:
Kac-Moody groups generalize Chevalley groups in a natural way. Again take . . .

1. a field \mathbb{F} and

2. a root system (root datum) whose Dynkin diagram has edge labels in
 \{3, 4, 6, 8, \infty\}.

(Again: need root datum, not just root system, to distinguish SL from PSL.)

Example

Let $\mathbb{F}[t, t^{-1}]$ denote the ring of Laurent polynomials over \mathbb{F}.

$G = SL_{n+1}(\mathbb{F}[t, t^{-1}])$ is a Kac-Moody group over \mathbb{F} with root system of type \widetilde{A}_n:

\[
\begin{array}{c}
1 \quad 2 \quad \ldots \quad n-1 \quad n \\
\end{array}
\]
To obtain the root system of type \(\tilde{A}_n \) we add a new root corresponding to the lowest root in \(A_n \). For \(n = 3 \), we get a new root \(\gamma \) corresponding to \(-\alpha - \beta \).

The positive fundamental root groups now are:

\[
U_\alpha = \left\langle \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array} \right) \mid a \in \mathbb{F} \right\rangle, \quad U_\beta = \left\langle \left(\begin{array}{cc} 1 & 0 \\ 1 & a \end{array} \right) \mid a \in \mathbb{F} \right\rangle, \quad U_\gamma = \left\langle \left(\begin{array}{cc} 1 & 0 \\ at & 1 \end{array} \right) \mid a \in \mathbb{F} \right\rangle.
\]

The negative root groups can be obtained from the positive ones by applying the Chevalley involution of \(G \): Transpose, invert and swap \(t \) and \(t^{-1} \), hence

\[
U_{-\gamma} = \left\langle \left(\begin{array}{cc} 1 & 0 \\ 1 & -at^{-1} \end{array} \right) \mid a \in \mathbb{F} \right\rangle.
\]

\(G \) is generated by its root groups.

Important consequence: The groups \(U_+ = \left\langle U_\rho \mid \rho \in \Pi \right\rangle \) and \(U_- = \left\langle U_{-\rho} \mid \rho \in \Pi \right\rangle \) are no longer conjugate to each other.
To obtain the root system of type \tilde{A}_n we add a new root corresponding to the lowest root in A_n. For $n = 3$, we get a new root γ corresponding to $-\alpha - \beta$.

The positive fundamental root groups now are:

$$U_\alpha = \left\langle \begin{pmatrix} 1 & 0 & a \\ 0 & 1 \\ 1 \end{pmatrix} \mid a \in F \right\rangle, \quad U_\beta = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ 1 \end{pmatrix} \mid a \in F \right\rangle, \quad U_\gamma = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ 1 \end{pmatrix} \mid a \in F \right\rangle.$$

The negative root groups can be obtained from the positive ones by applying the Chevalley involution of G: Transpose, invert and swap t and t^{-1}, hence

$$U_{-\gamma} = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -a \\ 1 \end{pmatrix} \mid a \in F \right\rangle.$$

G is generated by its root groups.

Important consequence: The groups $U_+ = \left\langle U_\rho \mid \rho \in \Pi \right\rangle$ and $U_- = \left\langle U_{-\rho} \mid \rho \in \Pi \right\rangle$ are no longer conjugate to each other.
To obtain the root system of type \tilde{A}_n we add a new root corresponding to the lowest root in A_n. For $n = 3$, we get a new root γ corresponding to $-\alpha - \beta$.

The positive fundamental root groups now are:

$$U_\alpha = \left\langle \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a \in F \right\rangle, \quad U_\beta = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} \mid a \in F \right\rangle, \quad U_\gamma = \left\langle \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a \in F \right\rangle.$$

The negative root groups can be obtained from the positive ones by applying the Chevalley involution of G: Transpose, invert and swap t and t^{-1}, hence

$$U_{-\gamma} = \left\langle \begin{pmatrix} 1 & 0 & -at^{-1} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a \in F \right\rangle.$$

G is generated by its root groups. Important consequence: The groups $U_+ = \left\langle U_\rho \mid \rho \in \Pi \right\rangle$ and $U_- = \left\langle U_{-\rho} \mid \rho \in \Pi \right\rangle$ are no longer conjugate to each other.
To obtain the root system of type \tilde{A}_n we add a new root corresponding to the lowest root in A_n. For $n = 3$, we get a new root γ corresponding to $-\alpha - \beta$.

The positive fundamental root groups now are:

$$ U_\alpha = \langle \begin{pmatrix} 1 & a & 0 \\ 0 & 1 \end{pmatrix} \mid a \in F \rangle, \quad U_\beta = \langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \end{pmatrix} \mid a \in F \rangle, \quad U_\gamma = \langle \begin{pmatrix} 1 & 0 \\ 0 & at \end{pmatrix} \mid a \in F \rangle. $$

The negative root groups can be obtained from the positive ones by applying the Chevalley involution of G: Transpose, invert and swap t and t^{-1}, hence

$$ U_{-\gamma} = \langle \begin{pmatrix} 1 & 0 \\ 0 & -at^{-1} \end{pmatrix} \mid a \in F \rangle. $$

G is generated by its root groups.

Important consequence: The groups $U_+ = \langle U_\rho \mid \rho \in \Pi \rangle$ and $U_- = \langle U_{-\rho} \mid \rho \in \Pi \rangle$ are no longer conjugate to each other.
To obtain the root system of type \tilde{A}_n we add a new root corresponding to the lowest root in A_n. For $n = 3$, we get a new root γ corresponding to $-\alpha - \beta$.

The positive fundamental root groups now are:

$$U_\alpha = \left\langle \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \mid a \in \mathbb{F} \right\rangle, U_\beta = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ 1 & 0 & 1 \end{pmatrix} \mid a \in \mathbb{F} \right\rangle, U_\gamma = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & a \\ 1 & 0 & 1 \end{pmatrix} \mid a \in \mathbb{F} \right\rangle.$$

The negative root groups can be obtained from the positive ones by applying the Chevalley involution of G: Transpose, invert and swap t and t^{-1}, hence

$$U_{-\gamma} = \left\langle \begin{pmatrix} 1 & 0 & -at^{-1} \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \mid a \in \mathbb{F} \right\rangle.$$

G is generated by its root groups.

Important consequence: The groups $U_+ = \left\langle U_\rho \mid \rho \in \Pi \right\rangle$ and $U_- = \left\langle U_{-\rho} \mid \rho \in \Pi \right\rangle$ are no longer conjugate to each other.
Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems
What is a building

Buildings are...

▶ “geometries” for groups with root datum, such as algebraic and Kac-Moody groups and finite groups of Lie type.

Example: For \(G = \text{SL}_{n+1}(\mathbb{F}) \) the projective space

\[
\mathbb{P}^n(\mathbb{F}) = \{ U \subset \mathbb{F}^{n+1} \mid 0 \neq U \neq V \}.
\]

▶ isomorphic to the homogeneous space \(G/B \), where \(B = N_G(U) \) and \(U \) is generated by all positive (fundamental) root groups.

Example: For \(G = \text{SL}_{n+1}(\mathbb{F}) \),

▶ \(U \) is the group of unit upper triangular matrices and
▶ \(B \) is the group of upper triangular matrices.

▶ isomorphically to a simplicial complex, thus have a topological realization.

▶ are versatile, have many interpretations and countless applications.

Careful: One group may act on several buildings. Only the choice of a system of root groups resp. the group \(B \) determines the building.
What is a building

Buildings are...

- “geometries” for groups with root datum, such as algebraic and Kac-Moody groups and finite groups of Lie type.

Example: For $G = \text{SL}_{n+1}(\mathbb{F})$ the projective space

$$\mathbb{P}^n(\mathbb{F}) = \{ U \subset \mathbb{F}^{n+1} | 0 \neq U \neq V \}.$$

- isomorphic to the homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive (fundamental) root groups.

Example: For $G = \text{SL}_{n+1}(\mathbb{F})$,

- U is the group of unit upper triangular matrices and
- B is the group of upper triangular matrices.

- isomorphic to a simplicial complex, thus have a topological realization.

- are versatile, have many interpretations and countless applications.

Careful: One group may act on several buildings. Only the choice of a system of root groups resp. the group B determines the building.
What is a building

Buildings are . . .

- . . . “geometries” for groups with root datum, such as algebraic and Kac-Moody groups and finite groups of Lie type.

Example: For $G = \text{SL}_{n+1}(\mathbb{F})$ the projective space

$$\mathbb{P}^n(\mathbb{F}) = \{ U \subset \mathbb{F}^{n+1} \mid 0 \neq U \neq V \}.$$

- . . . isomorphic to the homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive (fundamental) root groups.

Example: For $G = \text{SL}_{n+1}(\mathbb{F})$,

- U is the group of unit upper triangular matrices and
- B is the group of upper triangular matrices.

- . . . isomorphic to a simplicial complex, thus have a topological realization.

- . . . are versatile, have many interpretations and countless applications.

Careful: One group may act on several buildings. Only the choice of a system of root groups resp. the group B determines the building.
What is a building

Buildings are ...

- “geometries” for groups with root datum, such as algebraic and Kac-Moody groups and finite groups of Lie type.

Example: For $G = SL_{n+1}(\mathbb{F})$ the projective space

$$\mathbb{P}^n(\mathbb{F}) = \{ U \subset \mathbb{F}^{n+1} | 0 \neq U \neq V \}.$$

- isomorphic to the homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive (fundamental) root groups.

Example: For $G = SL_{n+1}(\mathbb{F})$,

- U is the group of unit upper triangular matrices and
- B is the group of upper triangular matrices.

- isomorphic to a simplicial complex, thus have a topological realization.

- are versatile, have many interpretations and countless applications.

Careful: One group may act on several buildings. Only the choice of a system of root groups resp. the group B determines the building.
What is a building

Buildings are . . .

▶ . . . “geometries” for groups with root datum, such as algebraic and Kac-Moody groups and finite groups of Lie type.

Example: For $G = \text{SL}_{n+1}(\mathbb{F})$ the projective space

$$\mathbb{P}^n(\mathbb{F}) = \{ U \subset \mathbb{F}^{n+1} \mid 0 \neq U \neq V \}.$$

▶ . . . isomorphic to the homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive (fundamental) root groups.

Example: For $G = \text{SL}_{n+1}(\mathbb{F})$,

▶ U is the group of unit upper triangular matrices and

▶ B is the group of upper triangular matrices.

▶ . . . isomorphic to a simplicial complex, thus have a topological realization.

▶ . . . are versatile, have many interpretations and countless applications.

Careful: One group may act on several buildings. Only the choice of a system of root groups resp. the group B determines the building.
What is a building

Buildings are . . .

- "geometries" for groups with root datum, such as algebraic and Kac-Moody groups and finite groups of Lie type.

 Example: For $G = \text{SL}_{n+1}(\mathbb{F})$ the projective space

 $$\mathbb{P}^n(\mathbb{F}) = \{ U \subset \mathbb{F}^{n+1} \mid 0 \neq U \neq V \}.$$

- isomorphic to the homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive (fundamental) root groups.

 Example: For $G = \text{SL}_{n+1}(\mathbb{F})$,

 - U is the group of unit upper triangular matrices and
 - B is the group of upper triangular matrices.

- isomorphic to a simplicial complex, thus have a topological realization.

- are versatile, have many interpretations and countless applications.

Careful: One group may act on several buildings. Only the choice of a system of root groups resp. the group B determines the building.
What is a building

Buildings are . . .

- . . .“geometries” for groups with root datum, such as algebraic and Kac-Moody groups and finite groups of Lie type.

Example: For $G = \text{SL}_{n+1}(\mathbb{F})$ the projective space

$$\mathbb{P}^n(\mathbb{F}) = \{ U \subset \mathbb{F}^{n+1} \mid 0 \neq U \neq V \}.$$

- . . .isomorphic to the homogeneous space G/B, where $B = N_G(U)$ and U is generated by all positive (fundamental) root groups.

Example: For $G = \text{SL}_{n+1}(\mathbb{F})$,

- U is the group of unit upper triangular matrices and
- B is the group of upper triangular matrices.

- . . .isomorphic to a simplicial complex, thus have a topological realization.

- . . .are versatile, have many interpretations and countless applications.

Careful: One group may act on several buildings. Only the choice of a system of root groups resp. the group B determines the building.
Some properties of buildings

Let C be the building associated to a group G with root group datum. Let (W, S) be the Coxeter system with Coxeter diagram equal to that of G.

Some properties of C:

- Labeled simplicial complex, with labels from S → every simplex has a type, a subset of S

- System \mathcal{A} of subcomplexes called apartments, and isomorphic to the Coxeter complex of (W, S)

- Weyl-distance $\delta : C \times C \rightarrow W$ assigns distances to pairs of simplices

- Numerical distance $l : C \times C \rightarrow \mathbb{N}$ defined by $l(\sigma_1, \sigma_2) := l(\delta(\sigma_1, \sigma_2))$

- Building is called spherical if l is bounded → notion of opposite simplices
Some properties of buildings

Let C be the building associated to a group G with root group datum. Let (W, S) be the Coxeter system with Coxeter diagram equal to that of G.

Some properties of C:

- Labeled simplicial complex, with labels from S → every simplex has a type, a subset of S

- System A of subcomplexes called apartments, and isomorphic to the Coxeter complex of (W, S)

- Weyl-distance $\delta : C \times C \rightarrow W$ assigns distances to pairs of simplices

- Numerical distance $l : C \times C \rightarrow \mathbb{N}$ defined by $l(\sigma_1, \sigma_2) := l(\delta(\sigma_1, \sigma_2))$

- Building is called spherical if l is bounded → notion of opposite simplices
Some properties of buildings

Let C be the building associated to a group G with root group datum. Let (W, S) be the Coxeter system with Coxeter diagram equal to that of G.

Some properties of C:

- Labeled simplicial complex, with labels from $S \to$ every simplex has a type, a subset of S

- System A of subcomplexes called apartments, and isomorphic to the Coxeter complex of (W, S)

- Weyl-distance $\delta : C \times C \to W$ assigns distances to pairs of simplices

- Numerical distance $l : C \times C \to \mathbb{N}$ defined by $l(\sigma_1, \sigma_2) := l(\delta(\sigma_1, \sigma_2))$

- Building is called spherical if l is bounded \to notion of opposite simplices
Some properties of buildings

Let C be the building associated to a group G with root group datum. Let (W, S) be the Coxeter system with Coxeter diagram equal to that of G.

Some properties of C:

- Labeled simplicial complex, with labels from $S \rightarrow$ every simplex has a type, a subset of S

- System \mathcal{A} of subcomplexes called apartments, and isomorphic to the Coxeter complex of (W, S)

- Weyl-distance $\delta : C \times C \rightarrow W$ assigns distances to pairs of simplices

- Numerical distance $l : C \times C \rightarrow \mathbb{N}$ defined by $l(\sigma_1, \sigma_2) := l(\delta(\sigma_1, \sigma_2))$

- Building is called spherical if l is bounded \rightarrow notion of opposite simplices
Some properties of buildings

Let C be the building associated to a group G with root group datum. Let (W, S) be the Coxeter system with Coxeter diagram equal to that of G.

Some properties of C:

- Labeled simplicial complex, with labels from S → every simplex has a type, a subset of S

- System \mathcal{A} of subcomplexes called apartments, and isomorphic to the Coxeter complex of (W, S)

- Weyl-distance $\delta : C \times C \rightarrow W$ assigns distances to pairs of simplices

- Numerical distance $l : C \times C \rightarrow \mathbb{N}$ defined by $l(\sigma_1, \sigma_2) := l(\delta(\sigma_1, \sigma_2))$

- Building is called spherical if l is bounded → notion of opposite simplices
Some properties of buildings

Let \mathcal{C} be the building associated to a group G with root group datum. Let (\mathcal{W}, S) be the Coxeter system with Coxeter diagram equal to that of G.

Some properties of \mathcal{C}:

- Labeled simplicial complex, with labels from $S \rightarrow$ every simplex has a type, a subset of S
- System \mathcal{A} of subcomplexes called apartments, and isomorphic to the Coxeter complex of (\mathcal{W}, S)
- Weyl-distance $\delta : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{W}$ assigns distances to pairs of simplices
- Numerical distance $l : \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{N}$ defined by $l(\sigma_1, \sigma_2) := l(\delta(\sigma_1, \sigma_2))$
- Building is called spherical if l is bounded \rightarrow notion of opposite simplices
Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems
Unitary forms

- Let G be Chevalley / Kac-Moody group over \mathbb{F}, and $\sigma \in \text{Aut}(\mathbb{F})$ with $\sigma^2 = \text{id}$.
- Let θ be the composition of the Chevalley involution of G with σ. For $\text{SL}_n(\mathbb{F})$: $\theta : x \mapsto (\sigma(x)^T)^{-1}$.
- Then $K := \text{Fix}_G(\theta)$ is called (\sigma-)unitary form of G.

Examples

<table>
<thead>
<tr>
<th>G</th>
<th>σ</th>
<th>K</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{SL}_{n+1}(\mathbb{F})$</td>
<td>$\text{id}_\mathbb{F}$</td>
<td>$\text{SO}_{n+1}(\mathbb{F})$</td>
<td>defined over \mathbb{C}; \mathbb{R}-form of G</td>
</tr>
<tr>
<td>$\text{SL}_{n+1}(\mathbb{C})$</td>
<td>$x \mapsto \bar{x}$</td>
<td>$\text{SU}_{n+1}(\mathbb{R})$</td>
<td>defined over \mathbb{C}; \mathbb{R}-form of G</td>
</tr>
<tr>
<td>$\text{SL}{n+1}(\mathbb{F}{q^2})$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{SU}{n+1}(\mathbb{F}{q^2})$</td>
<td>defined over \mathbb{F}_{q^2}</td>
</tr>
<tr>
<td>$\text{Sp}{2n}(\mathbb{F}{q^2})$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{Sp}{2n}(\mathbb{F}{q^2})$</td>
<td></td>
</tr>
<tr>
<td>$\text{SL}{n+1}(\mathbb{F}{q^2}[t, t^{-1}])$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{SU}_{n+1}(X)$</td>
<td>$X = \langle \lambda \cdot (t + \varepsilon t^{-1}) \mid \varepsilon = \pm 1, \lambda \in \mathbb{F}_{q^2}, \sigma(\lambda) = \varepsilon \lambda \rangle$</td>
</tr>
</tbody>
</table>

July 1, 2009 | TU Darmstadt | Max Horn | 12
Unitary forms

- Let G be Chevalley / Kac-Moody group over \mathbb{F}, and $\sigma \in \text{Aut}(\mathbb{F})$ with $\sigma^2 = \text{id}$.
- Let θ be the composition of the Chevalley involution of G with σ. For $\text{SL}_n(\mathbb{F})$:
 \[\theta : x \mapsto (\sigma(x)^T)^{-1}. \]
- Then $K := \text{Fix}_G(\theta)$ is called (σ)-unitary form of G.

Examples

<table>
<thead>
<tr>
<th>G</th>
<th>σ</th>
<th>K</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{SL}_{n+1}(\mathbb{F})$</td>
<td>$\text{id}_\mathbb{F}$</td>
<td>$\text{SO}_{n+1}(\mathbb{F})$</td>
<td>defined over \mathbb{C}; \mathbb{R}-form of G</td>
</tr>
<tr>
<td>$\text{SL}_{n+1}(\mathbb{C})$</td>
<td>$x \mapsto \bar{x}$</td>
<td>$\text{SU}_{n+1}(\mathbb{R})$</td>
<td>defined over \mathbb{C}; \mathbb{R}-form of G</td>
</tr>
<tr>
<td>$\text{SL}{n+1}(\mathbb{F}{q^2})$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{SU}{n+1}(\mathbb{F}{q^2})$</td>
<td>defined over \mathbb{F}_{q^2}</td>
</tr>
<tr>
<td>$\text{Sp}{2n}(\mathbb{F}{q^2})$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{Sp}{2n}(\mathbb{F}{q^2})$</td>
<td></td>
</tr>
<tr>
<td>$\text{SL}{n+1}(\mathbb{F}{q^2}[t, t^{-1}])$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{SU}_{n+1}(\mathbb{X})$</td>
<td>$X = \langle \lambda \cdot (t + \varepsilon t^{-1})</td>
</tr>
</tbody>
</table>
Unitary forms

- Let G be Chevalley / Kac-Moody group over \mathbb{F}, and $\sigma \in \text{Aut}(\mathbb{F})$ with $\sigma^2 = \text{id}$.
- Let θ be the composition of the Chevalley involution of G with σ. For $\text{SL}_n(\mathbb{F})$:
 \[
 \theta : x \mapsto (\sigma(x)^T)^{-1}.
 \]
- Then $K := \text{Fix}_G(\theta)$ is called (σ-)unitary form of G.

Examples

<table>
<thead>
<tr>
<th>G</th>
<th>σ</th>
<th>K</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{SL}_{n+1}(\mathbb{F})$</td>
<td>$\text{id}_{\mathbb{F}}$</td>
<td>$\text{SO}_{n+1}(\mathbb{F})$</td>
<td>defined over \mathbb{C}; \mathbb{R}-form of G</td>
</tr>
<tr>
<td>$\text{SL}_{n+1}(\mathbb{C})$</td>
<td>$x \mapsto \bar{x}$</td>
<td>$\text{SU}_{n+1}(\mathbb{R})$</td>
<td>defined over \mathbb{C}; \mathbb{R}-form of G</td>
</tr>
<tr>
<td>$\text{SL}{n+1}(\mathbb{F}{q^2})$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{SU}{n+1}(\mathbb{F}{q})$</td>
<td>defined over \mathbb{F}_{q^2}</td>
</tr>
<tr>
<td>$\text{Sp}{2n}(\mathbb{F}{q^2})$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{Sp}{2n}(\mathbb{F}{q})$</td>
<td></td>
</tr>
<tr>
<td>$\text{SL}{n+1}(\mathbb{F}{q^2}[t, t^{-1}])$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{SU}_{n+1}(X)$</td>
<td>$X = \langle \lambda \cdot (t + \varepsilon t^{-1}) \mid \varepsilon = \pm 1, \lambda \in \mathbb{F}_{q^2}, \sigma(\lambda) = \varepsilon \lambda \rangle$</td>
</tr>
</tbody>
</table>
Unitary forms

- Let G be Chevalley / Kac-Moody group over \mathbb{F}, and $\sigma \in \text{Aut}(\mathbb{F})$ with $\sigma^2 = \text{id}$.
- Let θ be the composition of the Chevalley involution of G with σ. For $\text{SL}_n(\mathbb{F})$:
 \[\theta : x \mapsto (\sigma(x)^T)^{-1}. \]
- Then $K := \text{Fix}_G(\theta)$ is called (σ)-unitary form of G.

Examples

<table>
<thead>
<tr>
<th>G</th>
<th>σ</th>
<th>K</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{SL}_{n+1}(\mathbb{F})$</td>
<td>$\text{id}_\mathbb{F}$</td>
<td>$\text{SO}_{n+1}(\mathbb{F})$</td>
<td>defined over \mathbb{C}; \mathbb{R}-form of G</td>
</tr>
<tr>
<td>$\text{SL}_{n+1}(\mathbb{C})$</td>
<td>$x \mapsto \bar{x}$</td>
<td>$\text{SU}_{n+1}(\mathbb{R})$</td>
<td>defined over \mathbb{F}_{q^2}</td>
</tr>
<tr>
<td>$\text{SL}{n+1}(\mathbb{F}{q^2})$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{SU}_{n+1}(\mathbb{F}_q)$</td>
<td></td>
</tr>
<tr>
<td>$\text{Sp}{2n}(\mathbb{F}{q^2})$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{Sp}_{2n}(\mathbb{F}_q)$</td>
<td></td>
</tr>
<tr>
<td>$\text{SL}{n+1}(\mathbb{F}{q^2}[t, t^{-1}])$</td>
<td>$x \mapsto x^q$</td>
<td>$\text{SU}_{n+1}(X)$</td>
<td>$X = \langle \lambda \cdot (t + \varepsilon t^{-1}) \mid \varepsilon = \pm 1, \lambda \in \mathbb{F}_{q^2}, \sigma(\lambda) = \varepsilon \lambda \rangle$</td>
</tr>
</tbody>
</table>
Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems
Let G be a group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Yes!

- A (twisted) Chevalley involution θ of G induces building automorphism of C.
- For $\sigma \in C$ define θ-distance $\delta^{\theta}(\sigma)$ as Weyl distance between σ and $\theta(\sigma)$.
- K preserves the θ-distance as $\delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta(\sigma, \theta(\sigma))$.
- Define flip-flop system C^{θ} as set of all $\sigma \in C$ for which σ and $\theta(\sigma)$ are opposite (i.e., the numerical θ-distance is globally maximal).

Clearly K acts on C^{θ}. But is it the “right” set? Does it have good properties?

What about the set C_{θ} of all simplices fixed by θ?
Let G be a group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Yes!

- A (twisted) Chevalley involution θ of G induces a building automorphism of C.
- For $\sigma \in C$ define θ-distance $\delta^\theta(\sigma)$ as Weyl distance between σ and $\theta(\sigma)$.
- K preserves the θ-distance as $\delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta(\sigma, \theta(\sigma))$.
- Define flip-flop system C^θ as the set of all $\sigma \in C$ for which σ and $\theta(\sigma)$ are opposite (i.e., the numerical θ-distance is globally maximal).

Clearly K acts on C^θ. But is it the “right” set? Does it have good properties?

What about the set C_θ of all simplices fixed by θ?
Geometries for unitary forms

Let G be group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Yes!

- A (twisted) Chevalley involution θ of G induces building automorphism of C.

- For $\sigma \in C$ define θ-distance $\delta^\theta(\sigma)$ as Weyl distance between σ and $\theta(\sigma)$.

- K preserves the θ-distance as $\delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta(\sigma, \theta(\sigma))$.

- Define flip-flop system C^θ as set of all $\sigma \in C$ for which σ and $\theta(\sigma)$ are opposite (i.e., the numerical θ-distance is globally maximal).

Clearly K acts on C^θ. But is it the “right” set? Does it have good properties?

What about the set C_θ of all simplices fixed by θ?
Let G be group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Yes!

- A (twisted) Chevalley involution θ of G induces building automorphism of C.
- For $\sigma \in C$ define θ-distance $\delta^\theta(\sigma)$ as Weyl distance between σ and $\theta(\sigma)$.
- K preserves the θ-distance as $\delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta(\sigma, \theta(\sigma))$.

Define flip-flop system C^θ as set of all $\sigma \in C$ for which σ and $\theta(\sigma)$ are opposite (i.e., the numerical θ-distance is globally maximal).

Clearly K acts on C^θ. But is it the “right” set? Does it have good properties?

What about the set C_θ of all simplices fixed by θ?
Let G be group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Yes!

- A (twisted) Chevalley involution θ of G induces building automorphism of C.
- For $\sigma \in C$ define θ-distance $\delta^\theta(\sigma)$ as Weyl distance between σ and $\theta(\sigma)$.
- K preserves the θ-distance as $\delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta(\sigma, \theta(\sigma))$.
- Define flip-flop system C^θ as set of all $\sigma \in C$ for which σ and $\theta(\sigma)$ are opposite (i.e., the numerical θ-distance is globally maximal).

Clearly K acts on C^θ. But is it the “right” set? Does it have good properties?

What about the set C_θ of all simplices fixed by θ?
Geometries for unitary forms

Let G be a group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Yes!

- A (twisted) Chevalley involution θ of G induces a building automorphism of C.
- For $\sigma \in C$ define θ-distance $\delta^\theta(\sigma)$ as Weyl distance between σ and $\theta(\sigma)$.
- K preserves the θ-distance as $\delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta(\sigma, \theta(\sigma))$.
- Define flip-flop system C^θ as the set of all $\sigma \in C$ for which σ and $\theta(\sigma)$ are opposite (i.e., the numerical θ-distance is globally maximal).

Clearly K acts on C^θ. But is it the “right” set? Does it have good properties?

What about the set C_θ of all simplices fixed by θ?
Geometries for unitary forms

Let \(G \) be group with root datum, let \(C \) be its building. Can we define a useful analog of \(C \) for a unitary form \(K \) of \(G \)?

Yes!

- A (twisted) Chevalley involution \(\theta \) of \(G \) induces building automorphism of \(C \).
- For \(\sigma \in C \) define \(\theta \)-distance \(\delta^\theta(\sigma) \) as Weyl distance between \(\sigma \) and \(\theta(\sigma) \).
- \(K \) preserves the \(\theta \)-distance as \(\delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta(\sigma, \theta(\sigma)) \).
- Define flip-flop system \(C^\theta \) as set of all \(\sigma \in C \) for which \(\sigma \) and \(\theta(\sigma) \) are opposite (i.e., the numerical \(\theta \)-distance is globally maximal).

Clearly \(K \) acts on \(C^\theta \). But is it the “right” set? Does it have good properties?

What about the set \(C_\theta \) of all simplices fixed by \(\theta \)?
Geometries for unitary forms

Let G be a group with root datum, let C be its building. Can we define a useful analog of C for a unitary form K of G?

Yes!

- A (twisted) Chevalley involution θ of G induces building automorphism of C.
- For $\sigma \in C$ define θ-distance $\delta^\theta(\sigma)$ as Weyl distance between σ and $\theta(\sigma)$.
- K preserves the θ-distance as $\delta(k\sigma, \theta(k\sigma)) = \delta(k\sigma, k\theta(\sigma)) = \delta(\sigma, \theta(\sigma))$.
- Define flip-flop system C^θ as set of all $\sigma \in C$ for which σ and $\theta(\sigma)$ are opposite (i.e., the numerical θ-distance is globally maximal).

Clearly K acts on C^θ. But is it the “right” set? Does it have good properties?

What about the set C_θ of all simplices fixed by θ?
Overview

- Groups with a root datum
- Buildings
- Unitary forms
- Flip-flop systems and Phan geometries
- Properties and applications of flip-flop systems
Applications

- **Phan type theorems** (Bennett, Devillers, Gramlich, Hoffman, H., Mühlherr, Nickel, Shpectorov)

- New lattices in Kac-Moody groups (Gramlich, Mühlherr)

- Automorphisms of unitary forms of Kac-Moody groups (Kac, Peterson; Caprace; Gramlich, Mars)

- Representation theory (Devillers, Gramlich, Mühlherr, Witzel):
 Generalize Solomon-Tits theorem

- Generalized Iwasawa decomposition (De Medts, Gramlich, H.):
 \(G \) split conn. reductive \(\mathbb{F} \)-group / Kac-Moody group over \(\mathbb{F} \). When does \(G_{\mathbb{F}} \) admit a decomposition \(G_{\mathbb{F}} = K_{\mathbb{F}} B_{\mathbb{F}} \) (where \(K \) is centralizer of an involution)?

- Finiteness properties (Caprace, Devillers, Gramlich, H., Mühlherr, Witzel)
Applications

- **Phan type theorems** (Bennett, Devillers, Gramlich, Hoffman, H., Mühlherr, Nickel, Shpectorov)

- **New lattices in Kac-Moody groups** (Gramlich, Mühlherr)

- **Automorphisms of unitary forms of Kac-Moody groups** (Kac, Peterson; Caprace; Gramlich, Mars)

- **Representation theory** (Devillers, Gramlich, Mühlherr, Witzel):
 Generalize Solomon-Tits theorem

- **Generalized Iwasawa decomposition** (De Medts, Gramlich, H.):
 G split conn. reductive \mathbb{F}-group / Kac-Moody group over \mathbb{F}. When does $G_{\mathbb{F}}$ admit a decomposition $G_{\mathbb{F}} = K_{\mathbb{F}}B_{\mathbb{F}}$ (where K is centralizer of an involution)?

- **Finiteness properties** (Caprace, Devillers, Gramlich, H., Mühlherr, Witzel)
Applications

▶ **Phan type theorems** (Bennett, Devillers, Gramlich, Hoffman, H., Mühlherr, Nickel, Shpectorov)

▶ **New lattices in Kac-Moody groups** (Gramlich, Mühlherr)

▶ **Automorphisms of unitary forms of Kac-Moody groups** (Kac, Peterson; Caprace; Gramlich, Mars)

▶ **Representation theory** (Devillers, Gramlich, Mühlherr, Witzel):
 Generalize Solomon-Tits theorem

▶ **Generalized Iwasawa decomposition** (De Medts, Gramlich, H.):
 G split conn. reductive \mathbb{F}-group / Kac-Moody group over \mathbb{F}. When does $G_\mathbb{F}$ admit a decomposition $G_\mathbb{F} = K_\mathbb{F} B_\mathbb{F}$ (where K is centralizer of an involution)?

▶ **Finiteness properties** (Caprace, Devillers, Gramlich, H., Mühlherr, Witzel)
Applications

- **Phan type theorems** (Bennett, Devillers, Gramlich, Hoffman, H., Mühlherr, Nickel, Shpectorov)

- **New lattices in Kac-Moody groups** (Gramlich, Mühlherr)

- **Automorphisms of unitary forms of Kac-Moody groups** (Kac, Peterson; Caprace; Gramlich, Mars)

- **Representation theory** (Devillers, Gramlich, Mühlherr, Witzel):
 Generalize Solomon-Tits theorem

- **Generalized Iwasawa decomposition** (De Medts, Gramlich, H.):
 \(G \) split conn. reductive \(\mathbb{F} \)-group / Kac-Moody group over \(\mathbb{F} \). When does \(G_{\mathbb{F}} \) admit a decomposition \(G_{\mathbb{F}} = K_{\mathbb{F}} B_{\mathbb{F}} \) (where \(K \) is centralizer of an involution)?

- **Finiteness properties** (Caprace, Devillers, Gramlich, H., Mühlherr, Witzel)
Applications

- **Phan type theorems** (Bennett, Devillers, Gramlich, Hoffman, H., Mühlherr, Nickel, Shpectorov)

- **New lattices in Kac-Moody groups** (Gramlich, Mühlherr)

- **Automorphisms of unitary forms of Kac-Moody groups** (Kac, Peterson; Caprace; Gramlich, Mars)

- **Representation theory** (Devillers, Gramlich, Mühlherr, Witzel):
 Generalize Solomon-Tits theorem

- **Generalized Iwasawa decomposition** (De Medts, Gramlich, H.):
 G split conn. reductive \mathbb{F}-group / Kac-Moody group over \mathbb{F}. When does $G_\mathbb{F}$ admit a decomposition $G_\mathbb{F} = K_\mathbb{F}B_\mathbb{F}$ (where K is centralizer of an involution)?

- **Finiteness properties** (Caprace, Devillers, Gramlich, H., Mühlherr, Witzel)
Applications

- **Phan type theorems** (Bennett, Devillers, Gramlich, Hoffman, H., Mühlherr, Nickel, Shpectorov)

- **New lattices in Kac-Moody groups** (Gramlich, Mühlherr)

- **Automorphisms of unitary forms of Kac-Moody groups** (Kac, Peterson; Caprace; Gramlich, Mars)

- **Representation theory** (Devillers, Gramlich, Mühlherr, Witzel):
 Generalize Solomon-Tits theorem

- **Generalized Iwasawa decomposition** (De Medts, Gramlich, H.):
 G split conn. reductive \mathbb{F}-group / Kac-Moody group over \mathbb{F}. When does $G_\mathbb{F}$ admit a decomposition $G_\mathbb{F} = K_\mathbb{F}B_\mathbb{F}$ (where K is centralizer of an involution)?

- **Finiteness properties** (Caprace, Devillers, Gramlich, H., Mühlherr, Witzel)
Let θ be an involutory almost-isometry of a building \mathcal{C}.

For $\sigma \in \mathcal{C}$ the local flip-flop system $\mathcal{C}_\sigma^\theta$ consists of simplices in $\text{lk} \sigma$ for which the numerical θ-distance is maximal among all simplices in the link.

We say $\mathcal{C}_\sigma^\theta$ allows direct descent if any simplex in $\text{lk} \sigma$ is connected to a simplex in $\mathcal{C}_\sigma^\theta$ by a minimal gallery along which l^θ is strictly increasing.

Call (\mathcal{C}, θ) a good pair if for all corank 2 simplices σ, $\mathcal{C}_\sigma^\theta$ is connected and allows direct descent.
Structure of flip-flop systems: Some definitions

- Let θ be an involutory almost-isometry of a building \mathcal{C}.

- For $\sigma \in \mathcal{C}$ the local flip-flop system $\mathcal{C}_\sigma^\theta$ consists of simplices in $\text{Lk} \sigma$ for which the numerical θ-distance is maximal among all simplices in the link.

- We say $\mathcal{C}_\sigma^\theta$ allows direct descent if any simplex in $\text{Lk} \sigma$ is connected to a simplex in $\mathcal{C}_\sigma^\theta$ by a minimal gallery along which l^θ is strictly increasing.

- Call (\mathcal{C}, θ) a good pair if for all corank 2 simplices σ, $\mathcal{C}_\sigma^\theta$ is connected and allows direct descent.
Let θ be an involutory almost-isometry of a building \mathcal{C}.

For $\sigma \in \mathcal{C}$ the **local flip-flop system** $\mathcal{C}_\sigma^\theta$ consists of simplices in $\text{lk} \sigma$ for which the numerical θ-distance is maximal among all simplices *in the link*.

We say $\mathcal{C}_\sigma^\theta$ allows **direct descent** if any simplex in $\text{lk} \sigma$ is connected to a simplex in $\mathcal{C}_\sigma^\theta$ by a minimal gallery along which l^θ is strictly increasing.

Call (\mathcal{C}, θ) a **good pair** if for all corank 2 simplices σ, $\mathcal{C}_\sigma^\theta$ is connected and allows direct descent.
Structure of flip-flop systems: Some definitions

Let \(\theta \) be an involutory almost-isometry of a building \(\mathcal{C} \).

For \(\sigma \in \mathcal{C} \) the local flip-flop system \(\mathcal{C}_\sigma^\theta \) consists of simplices in \(\text{lk} \sigma \) for which the numerical \(\theta \)-distance is maximal among all simplices in the link.

We say \(\mathcal{C}_\sigma^\theta \) allows direct descent if any simplex in \(\text{lk} \sigma \) is connected to a simplex in \(\mathcal{C}_\sigma^\theta \) by a minimal gallery along which \(l^\theta \) is strictly increasing.

Call \((\mathcal{C}, \theta)\) a good pair if for all corank 2 simplices \(\sigma \), \(\mathcal{C}_\sigma^\theta \) is connected and allows direct descent.
Theorem (Gramlich, H., Mühlherr 2008)

If (C, θ) is a good pair, then C^θ is path connected and pure (i.e., all its maximal simplices have equal type J for some spherical subset J of S). In fact C^θ is residually connected, hence geometric.

Example

Let θ be the twisted Chevalley involution of $SL_n(F)$, $F \neq F_4$. Then $(C(SL_n(F)), \theta)$ is a good pair. Therefore C^θ is geometric; we call the corresponding incidence geometry the flip-flop geometry or Phan geometry.
Theorem (Gramlich, H., Mühlherr 2008)

If (C, θ) is a good pair, then C^θ is path connected and pure (i.e., all its maximal simplices have equal type J for some spherical subset J of S). In fact C^θ is residually connected, hence geometric.

Example

Let θ be the twisted Chevalley involution of $\text{SL}_n(F)$, $F \neq F_4$. Then $(C(\text{SL}_n(F)), \theta)$ is a good pair. Therefore C^θ is geometric; we call the corresponding incidence geometry the flip-flop geometry or Phan geometry.
Structure of flip-flop systems:
Sketch of proof

Start with two arbitrary maximal simplices σ_1 and σ_2 in C^θ.

- Choose maximal simplices $\bar{\sigma}_i$ in C, $i \in \{1, 2\}$, such that σ_i is a face of $\bar{\sigma}_i$.

- Choose a minimal gallery γ between $\bar{\sigma}_1$ and $\bar{\sigma}_2$ inside C.

- Using the condition on corank 2 simplices, transform γ by bypassing chambers with low numerical θ-distance, gradually increasing the maximal numerical θ-distance of chambers in γ.

- Ultimately, num. θ-distance is non-decreasing along $\gamma \rightarrow$ actually constant.

- Adjacent chambers with equal num. θ-distance have equal θ-distance
 $\implies \bar{\sigma}_1$ and $\bar{\sigma}_2$ have equal θ-distance
 $\implies \sigma_1$ and σ_2 have same type and C^θ is connected.

- Finally, show that residual connectedness is inherited from C.
Structure of flip-flop systems: Sketch of proof

Start with two arbitrary maximal simplices \(\sigma_1 \) and \(\sigma_2 \) in \(C^\theta \).

▶ Choose maximal simplices \(\bar{\sigma}_i \) in \(C \), \(i \in \{1, 2\} \), such that \(\sigma_i \) is a face of \(\bar{\sigma}_i \).

▶ Choose a minimal gallery \(\gamma \) between \(\bar{\sigma}_1 \) and \(\bar{\sigma}_2 \) inside \(C \).

▶ Using the condition on corank 2 simplices, transform \(\gamma \) by bypassing chambers with low numerical \(\theta \)-distance, gradually increasing the maximal numerical \(\theta \)-distance of chambers in \(\gamma \).

▶ Ultimately, num. \(\theta \)-distance is non-decreasing along \(\gamma \rightarrow \) actually constant.

▶ Adjacent chambers with equal num. \(\theta \)-distance have equal \(\theta \)-distance

\[\Rightarrow \bar{\sigma}_1 \text{ and } \bar{\sigma}_2 \text{ have equal } \theta \text{-distance} \]

\[\Rightarrow \sigma_1 \text{ and } \sigma_2 \text{ have same type and } C^\theta \text{ is connected.} \]

▶ Finally, show that residual connectedness is inherited from \(C \).
Structure of flip-flop systems: Sketch of proof

Start with two arbitrary maximal simplices σ_1 and σ_2 in C^θ.

- Choose maximal simplices $\bar{\sigma}_i$ in C, $i \in \{1, 2\}$, such that σ_i is a face of $\bar{\sigma}_i$.

- Choose a minimal gallery γ between $\bar{\sigma}_1$ and $\bar{\sigma}_2$ inside C.

- Using the condition on corank 2 simplices, transform γ by bypassing chambers with low numerical θ-distance, gradually increasing the maximal numerical θ-distance of chambers in γ.

- Ultimately, num. θ-distance is non-decreasing along γ → actually constant.

- Adjacent chambers with equal num. θ-distance have equal θ-distance
 $\implies \bar{\sigma}_1$ and $\bar{\sigma}_2$ have equal θ-distance
 $\implies \sigma_1$ and σ_2 have same type and C^θ is connected.

- Finally, show that residual connectedness is inherited from C.
Structure of flip-flop systems: Sketch of proof

Start with two arbitrary maximal simplices \(\sigma_1 \) and \(\sigma_2 \) in \(C^{\theta} \).

- Choose maximal simplices \(\bar{\sigma}_i \) in \(C \), \(i \in \{1, 2\} \), such that \(\sigma_i \) is a face of \(\bar{\sigma}_i \).

- Choose a minimal gallery \(\gamma \) between \(\bar{\sigma}_1 \) and \(\bar{\sigma}_2 \) inside \(C \).

- Using the condition on corank 2 simplices, transform \(\gamma \) by bypassing chambers with low numerical \(\theta \)-distance, gradually increasing the maximal numerical \(\theta \)-distance of chambers in \(\gamma \).

- Ultimately, num. \(\theta \)-distance is non-decreasing along \(\gamma \) \(\rightarrow \) actually constant.

- Adjacent chambers with equal num. \(\theta \)-distance have equal \(\theta \)-distance
 \(\implies \bar{\sigma}_1 \) and \(\bar{\sigma}_2 \) have equal \(\theta \)-distance
 \(\implies \sigma_1 \) and \(\sigma_2 \) have same type and \(C^{\theta} \) is connected.

- Finally, show that residual connectedness is inherited from \(C \).
Start with two arbitrary maximal simplices σ_1 and σ_2 in C^θ.

- Choose maximal simplices $\bar{\sigma}_i$ in C, $i \in \{1, 2\}$, such that σ_i is a face of $\bar{\sigma}_i$.
- Choose a minimal gallery γ between $\bar{\sigma}_1$ and $\bar{\sigma}_2$ inside C.
- Using the condition on corank 2 simplices, transform γ by bypassing chambers with low numerical θ-distance, gradually increasing the maximal numerical θ-distance of chambers in γ.
- Ultimately, num. θ-distance is non-decreasing along $\gamma \rightarrow$ actually constant.
- Adjacent chambers with equal num. θ-distance have equal θ-distance
 \[\Rightarrow \bar{\sigma}_1 \text{ and } \bar{\sigma}_2 \text{ have equal } \theta \text{-distance} \]
 \[\Rightarrow \sigma_1 \text{ and } \sigma_2 \text{ have same type and } C^\theta \text{ is connected.} \]
- Finally, show that residual connectedness is inherited from C.
Structure of flip-flop systems:
Sketch of proof

Start with two arbitrary maximal simplices σ_1 and σ_2 in C^θ.

- Choose maximal simplices $\bar{\sigma}_i$ in C, $i \in \{1, 2\}$, such that σ_i is a face of $\bar{\sigma}_i$.

- Choose a minimal gallery γ between $\bar{\sigma}_1$ and $\bar{\sigma}_2$ inside C.

- Using the condition on corank 2 simplices, transform γ by bypassing chambers with low numerical θ-distance, gradually increasing the maximal numerical θ-distance of chambers in γ.

- Ultimately, num. θ-distance is non-decreasing along $\gamma \rightarrow$ actually constant.

- Adjacent chambers with equal num. θ-distance have equal θ-distance
 $\implies \bar{\sigma}_1$ and $\bar{\sigma}_2$ have equal θ-distance
 $\implies \sigma_1$ and σ_2 have same type and C^θ is connected.

- Finally, show that residual connectedness is inherited from C.

Finding good pairs

Theorem (H., van Maldeghem 2009)

Let G be a group with 2-spherical \mathbb{F}-locally split root group datum, where $\text{char} \mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then $(C(G), \theta)$ is a good pair for any (twisted) Chevalley involution θ of G.

Proof by studying local case, i.e., involutions and polarities of Moufang planes, quadrangles and hexagons. Determine: R_θ connected? Direct descent into R_θ possible?

Corollary

Let G be a group with 2-spherical \mathbb{F}-locally split root group datum, where $\text{char} \mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then C^θ is pure and residually connected, hence geometric, for any (twisted) Chevalley involution θ of G.
Finding good pairs

Theorem (H., van Maldeghem 2009)

Let G be a group with 2-spherical \mathbb{F}-locally split root group datum, where $\text{char} \mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then $(C(G), \theta)$ is a good pair for any (twisted) Chevalley involution θ of G.

Proof by studying local case, i.e., involutions and polarities of Moufang planes, quadrangles and hexagons. Determine: R_θ connected? Direct descent into R_θ possible?

Corollary

Let G be a group with 2-spherical \mathbb{F}-locally split root group datum, where $\text{char} \mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then C^θ is pure and residually connected, hence geometric, for any (twisted) Chevalley involution θ of G.
Finding good pairs

Theorem (H., van Maldeghem 2009)

Let G be a group with 2-spherical \mathbb{F}-locally split root group datum, where $\text{char}\mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then $(C(G), \theta)$ is a good pair for any (twisted) Chevalley involution θ of G.

Proof by studying local case, i.e., involutions and polarities of Moufang planes, quadrangles and hexagons. Determine: R_θ connected? Direct descent into R_θ possible?

Corollary

Let G be a group with 2-spherical \mathbb{F}-locally split root group datum, where $\text{char}\mathbb{F} \neq 2$ and $|\mathbb{F}| \geq 5$. Then C^θ is pure and residually connected, hence geometric, for any (twisted) Chevalley involution θ of G.
On finitely generated unitary forms

In geometric group theory, so-called finiteness properties of groups are of high interest. Among these are finite generation and finite presentation.

Theorem (Gramlich, H., and Mühlherr, 2008)

Let G be a 2-spherical Kac-Moody group over a finite field \mathbb{F}_q, $q \geq 5$. Suppose θ is an involutory automorphism which interchanges the two conjugacy classes of Borel subgroups. If q is odd then $K := \text{Fix}_G(\theta)$ is finitely generated.

- Constant bound on q, does not depend on the rank n
- Works for a large class of abstract involutory automorphisms
- Proof does not work in characteristic 2 in general, but can be extended to twisted Chevalley involution in arbitrary characteristic.
In geometric group theory, so-called \textbf{finiteness properties} of groups are of high interest. Among these are finite generation and finite presentation.

\textbf{Theorem (Gramlich, H., and Mühlherr, 2008)}

Let G be a 2-spherical Kac-Moody group over a finite field \mathbb{F}_q, $q \geq 5$. Suppose θ is an involutory automorphism which interchanges the two conjugacy classes of Borel subgroups. If q is odd then $K := \text{Fix}_G(\theta)$ is finitely generated.

\subitem Constant bound on q, does not depend on the rank n

\subitem Works for a large class of abstract involutory automorphisms

\subitem Proof does not work in characteristic 2 in general, but can be extended to twisted Chevalley involution in arbitrary characteristic.
In geometric group theory, so-called finiteness properties of groups are of high interest. Among these are finite generation and finite presentation.

Theorem (Gramlich, H., and Mühlherr, 2008)

Let G be a 2-spherical Kac-Moody group over a finite field \mathbb{F}_q, $q \geq 5$. Suppose θ is an involutory automorphism which interchanges the two conjugacy classes of Borel subgroups. If q is odd then $K := \text{Fix}_G(\theta)$ is finitely generated.

- Constant bound on q, does not depend on the rank n
- Works for a large class of abstract involutory automorphisms
- Proof does not work in characteristic 2 in general, but can be extended to twisted Chevalley involution in arbitrary characteristic.
In geometric group theory, so-called finiteness properties of groups are of high interest. Among these are finite generation and finite presentation.

Theorem (Gramlich, H., and Mühlherr, 2008)

Let G be a 2-spherical Kac-Moody group over a finite field \mathbb{F}_q, $q \geq 5$. Suppose θ is an involutory automorphism which interchanges the two conjugacy classes of Borel subgroups. If q is odd then $K := \text{Fix}_G(\theta)$ is finitely generated.

- Constant bound on q, does not depend on the rank n
- Works for a large class of abstract involutory automorphisms
- Proof does not work in characteristic 2 in general, but can be extended to twisted Chevalley involution in arbitrary characteristic.
In geometric group theory, so-called finiteness properties of groups are of high interest. Among these are finite generation and finite presentation.

Theorem (Gramlich, H., and Mühlherr, 2008)

Let G be a 2-spherical Kac-Moody group over a finite field \mathbb{F}_q, $q \geq 5$. Suppose θ is an involutory automorphism which interchanges the two conjugacy classes of Borel subgroups. If q is odd then $K := \text{Fix}_G(\theta)$ is finitely generated.

- Constant bound on q, does not depend on the rank n
- Works for a large class of abstract involutory automorphisms
- Proof does not work in characteristic 2 in general, but can be extended to twisted Chevalley involution in arbitrary characteristic.
On finitely generated unitary forms:
Sketch of proof

1. Recall that C^θ is a subcomplex of the building Δ and $K.C^\theta \subseteq C^\theta$.

2. C^θ is pure and path connected since G is \mathbb{F}_q-locally split and q odd.

3. Choose a system X' of representatives of the K-orbits on the maximal simplices in C^θ. For each $\sigma \in X'$ pick a maximal simplex $\bar{\sigma} \in C$ containing σ. Set $X := \{\bar{\sigma} \mid \sigma \in X'\}$.

4. Since C^θ is connected, by standard arguments we have

$$K = \langle Stab_K(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \in X \rangle.$$

5. Show: X' and hence X is finite: Identify K-orbits on C^θ bijectively with orbits on a suitable maximal torus T. But here maximal tori are finite.

6. Show: Stabilizers in K of corank 1 simplices are finite.
On finitely generated unitary forms: Sketch of proof

1. Recall that C^θ is a subcomplex of the building Δ and $K\cdot C^\theta \subseteq C^\theta$.

2. C^θ is pure and path connected since G is \mathbb{F}_q-locally split and q odd.

3. Choose a system X' of representatives of the K-orbits on the maximal simplices in C^θ. For each $\sigma \in X'$ pick a maximal simplex $\bar{\sigma} \in C$ containing σ. Set $X := \{\bar{\sigma} \mid \sigma \in X'\}$.

4. Since C^θ is connected, by standard arguments we have

$$K = \langle Stab_K(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \in X \rangle .$$

5. Show: X' and hence X is finite: Identify K-orbits on C^θ bijectively with orbits on a suitable maximal torus T. But here maximal tori are finite.

6. Show: Stabilizers in K of corank 1 simplicies are finite.
On finitely generated unitary forms: Sketch of proof

1. Recall that C^θ is a subcomplex of the building Δ and $K.C^\theta \subseteq C^\theta$.

2. C^θ is pure and path connected since G is \mathbb{F}_q-locally split and q odd.

3. Choose a system X' of representatives of the K-orbits on the maximal simplices in C^θ. For each $\sigma \in X'$ pick a maximal simplex $\bar{\sigma} \in C$ containing σ. Set $X := \{\bar{\sigma} \mid \sigma \in X'\}$.

4. Since C^θ is connected, by standard arguments we have

 $$K = \langle Stab_K(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \in X \rangle.$$

5. Show: X' and hence X is finite: Identify K-orbits on C^θ bijectively with orbits on a suitable maximal torus T. But here maximal tori are finite.

6. Show: Stabilizers in K of corank 1 simplicies are finite.
On finitely generated unitary forms: Sketch of proof

1. Recall that C^θ is a subcomplex of the building Δ and $K.C^\theta \subseteq C^\theta$.

2. C^θ is pure and path connected since G is \mathbb{F}_q-locally split and q odd.

3. Choose a system X' of representatives of the K-orbits on the maximal simplices in C^θ. For each $\sigma \in X'$ pick a maximal simplex $\tilde{\sigma} \in C$ containing σ. Set $X := \{\tilde{\sigma} \mid \sigma \in X'\}$.

4. Since C^θ is connected, by standard arguments we have

 $$K = \langle \text{Stab}_K(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \in X \rangle.$$

5. Show: X' and hence X is finite: Identify K-orbits on C^θ bijectively with orbits on a suitable maximal torus T. But here maximal tori are finite.

6. Show: Stabilizers in K of corank 1 simplices are finite.
On finitely generated unitary forms:
Sketch of proof

1. Recall that C^θ is a subcomplex of the building Δ and $K.C^\theta \subseteq C^\theta$.

2. C^θ is pure and path connected since G is \mathbb{F}_q-locally split and q odd.

3. Choose a system X' of representatives of the K-orbits on the maximal simplices in C^θ. For each $\sigma \in X'$ pick a maximal simplex $\bar{\sigma} \in C$ containing σ. Set $X := \{\bar{\sigma} \mid \sigma \in X'\}$.

4. Since C^θ is connected, by standard arguments we have $K = \langle Stab_K(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \in X \rangle$.

5. Show: X' and hence X is finite: Identify K-orbits on C^θ bijectively with orbits on a suitable maximal torus T. But here maximal tori are finite.

6. Show: Stabilizers in K of corank 1 simplices are finite.
On finitely generated unitary forms: Sketch of proof

1. Recall that C^θ is a subcomplex of the building Δ and $K.C^\theta \subseteq C^\theta$.

2. C^θ is pure and path connected since G is \mathbb{F}_q-locally split and q odd.

3. Choose a system X' of representatives of the K-orbits on the maximal simplices in C^θ. For each $\sigma \in X'$ pick a maximal simplex $\bar{\sigma} \in C$ containing σ. Set $X := \{\bar{\sigma} \mid \sigma \in X'\}$.

4. Since C^θ is connected, by standard arguments we have

 $$K = \langle Stab_K(\sigma) \mid \sigma \text{ is a facet of } \sigma_0 \in X \rangle.$$

5. Show: X' and hence X is finite: Identify K-orbits on C^θ bijectively with orbits on a suitable maximal torus T. But here maximal tori are finite.

6. Show: Stabilizers in K of corank 1 simplices are finite.
References

Alice Devillers and Bernhard Mühlherr.
On the simple connectedness of certain subsets of buildings.

Aloysius G. Helminck and Shu Ping Wang.
On rationality properties of involutions of reductive groups.

Max Horn.
Involutions of Kac-Moody groups.

H.: Oberwolfach report

Ralf Gramlich and Andreas Mars.
Isomorphisms of unitary forms of Kac-Moody groups over finite fields
Unitary forms are finitely generated: Well, not always . . .

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K. We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- Let T be a tree residue of the building. Then $G \cdot T$ is a simplicial tree (Dymara/Januszkiewicz).
- The key insight is the following: The action of the lattice K on the simplicial tree $G \cdot T$ is minimal but . . .
- . . . there are infinitely many K-orbits on $G \cdot T$.
- It follows (Bass) that the lattice K cannot be finitely generated.

Based on this evidence, one might conjecture: If G is $(m + 1)$-spherical, then K is of type F_m and “usually” the converse holds.
Unitary forms are finitely generated:
Well, not always . . .

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K.

We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- Let T be a tree residue of the building. Then $G.T$ is a simplicial tree (Dymara/Januszkiewicz).
- The key insight is the following: The action of the lattice K on the simplicial tree $G.T$ is minimal but . . .
- . . . there are infinitely many K-orbits on $G.T$.
- It follows (Bass) that the lattice K cannot be finitely generated.

Based on this evidence, one might conjecture: If G is $(m + 1)$-spherical, then K is of type F_m and “usually” the converse holds.
Unitary forms are finitely generated: Well, not always . . .

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K. We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

Let T be a tree residue of the building. Then $G.T$ is a simplicial tree (Dymara/Januszkiewicz).

The key insight is the following: The action of the lattice K on the simplicial tree $G.T$ is minimal but . . .

...there are infinitely many K-orbits on $G.T$.

It follows (Bass) that the lattice K cannot be finitely generated.

Based on this evidence, one might conjecture: If G is $(m+1)$-spherical, then K is of type F_m and “usually” the converse holds.
Unitary forms are finitely generated: Well, not always . . .

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K.

We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- Let T be a tree residue of the building. Then $G \cdot T$ is a simplicial tree (Dymara/Januszkiewicz).

- The key insight is the following: The action of the lattice K on the simplicial tree $G \cdot T$ is minimal but . . .

- . . .there are infinitely many K-orbits on $G \cdot T$.

- It follows (Bass) that the lattice K cannot be finitely generated.

Based on this evidence, one might conjecture: If G is $(m + 1)$-spherical, then K is of type F_m and “usually” the converse holds.
Unitary forms are finitely generated:
Well, not always . . .

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K. We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- Let T be a tree residue of the building. Then $G.T$ is a simplicial tree (Dymara/Januszkiewicz).
- The key insight is the following: The action of the lattice K on the simplicial tree $G.T$ is minimal but . . .
- . . . there are infinitely many K-orbits on $G.T$.
- It follows (Bass) that the lattice K cannot be finitely generated.

Based on this evidence, one might conjecture: If G is $(m+1)$-spherical, then K is of type F_m and “usually” the converse holds.
Unitary forms are finitely generated: Well, not always . . .

Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K. We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- Let T be a tree residue of the building. Then $G.T$ is a simplicial tree (Dymara/Januszkiewicz).
- The key insight is the following: The action of the lattice K on the simplicial tree $G.T$ is minimal but . . .
- . . . there are infinitely many K-orbits on $G.T$.
- It follows (Bass) that the lattice K cannot be finitely generated.

Based on this evidence, one might conjecture: If G is $(m+1)$-spherical, then K is of type F_m and “usually” the converse holds.
Let G be a non-spherical Kac-Moody group over \mathbb{F}_{q^2} with unitary form K.

We have seen: if G is 2-spherical and $q^2 > 4$, then K is finitely generated.

If G is not 2-spherical, then K is not finitely generated, as observed recently by Caprace, Gramlich and Mühlherr.

- Let T be a tree residue of the building. Then $G.T$ is a simplicial tree (Dymara/Januszkiewicz).
- The key insight is the following: The action of the lattice K on the simplicial tree $G.T$ is minimal but ...
- ...there are infinitely many K-orbits on $G.T$.
- It follows (Bass) that the lattice K cannot be finitely generated.

Based on this evidence, one might conjecture: If G is $(m + 1)$-spherical, then K is of type F_m and “usually” the converse holds.