From Fischer spaces to (Lie) algebras

Max Horn

joint work with H. Cuypers, J. in 't panhuis, S. Shpectorov

Technische Universität Braunschweig

Buildings 2010

<ロ> (四) (四) (三) (三) (三)

Overview

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

3-transposition groups and Fischer spaces

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

2 Algebras from Fischer spaces

3 Vanishing sets

4 Lie algebras

Overview

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

3-transposition groups and Fischer spaces

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

3

Algebras from Fischer space

3 Vanishing sets

4 Lie algebras

5 Some computations

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing set

Lie algebras

Some computations A class of 3-transpositions in a group G is a conjugacy class D of G such that

- the elements of D are involutions and
- **(2)** for all $d, e \in D$ the order of de is equal to 1, 2 or 3.

G is called 3-transposition group if $G = \langle D \rangle$.

Examples

• Transpositions in $G = \text{Sym}(n); D = (12)^G$

• Transvections in G = U(n, 2); $D = d^{G}$ where

$$d = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$
 (in GAP's version of this group

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

• Fi22, Fi23, Fi24 (note: the simple group is Fi24)

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations A class of 3-transpositions in a group G is a conjugacy class D of G such that

- the elements of D are involutions and
- **(2)** for all $d, e \in D$ the order of de is equal to 1, 2 or 3.

G is called 3-transposition group if $G = \langle D \rangle$.

Examples

- Transpositions in G = Sym(n); $D = (12)^G$
- Transvections in G = U(n, 2); $D = d^G$ where

$$d = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$
 (in GAP's version of this group)

• Fi₂₂, Fi₂₃, Fi₂₄ (note: the simple group is Fi'_{24})

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations A class of 3-transpositions in a group G is a conjugacy class D of G such that

- the elements of D are involutions and
- **(2)** for all $d, e \in D$ the order of de is equal to 1, 2 or 3.

G is called 3-transposition group if $G = \langle D \rangle$.

Examples

- Transpositions in G = Sym(n); $D = (12)^G$
- Transvections in G = U(n, 2); $D = d^{G}$ where

$$d = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}$$
 (in GAP's version of this group)

• Fi₂₂, Fi₂₃, Fi₂₄ (note: the simple group is Fi'_{24})

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations A class of 3-transpositions in a group G is a conjugacy class D of G such that

- the elements of D are involutions and
- **(2)** for all $d, e \in D$ the order of de is equal to 1, 2 or 3.

G is called 3-transposition group if $G = \langle D \rangle$.

Examples

- Transpositions in G = Sym(n); $D = (12)^G$
- Transvections in G = U(n, 2); $D = d^{G}$ where

$$d = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}$$
 (in GAP's version of this group)

• Fi₂₂, Fi₂₃, Fi₂₄ (note: the simple group is Fi'_{24})

Classification of 3-transpositions groups

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

- Fischer (around 1970) classified finite 3-transposition groups with no non-trivial normal solvable subgroups.
 → classification of finite simple groups
- Cuypers and Hall (90s) classified all (possibly infinite) 3-transposition groups with trivial center, using geometric methods (Fischer spaces).
- Cuypers and Hall: If center is non-trivial, then G/Z(G) is 3-transposition group with trivial center.

Classification of 3-transpositions groups

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

- Fischer (around 1970) classified finite 3-transposition groups with no non-trivial normal solvable subgroups.
 → classification of finite simple groups
- Cuypers and Hall (90s) classified all (possibly infinite)
 3-transposition groups with trivial center, using geometric methods (Fischer spaces).
- Cuypers and Hall: If center is non-trivial, then G/Z(G) is 3-transposition group with trivial center.

Classification of 3-transpositions groups

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

- Fischer (around 1970) classified finite 3-transposition groups with no non-trivial normal solvable subgroups.
 ~> classification of finite simple groups
- Cuypers and Hall (90s) classified all (possibly infinite)
 3-transposition groups with trivial center, using geometric methods (Fischer spaces).
- Cuypers and Hall: If center is non-trivial, then G/Z(G) is 3-transposition group with trivial center.

Fischer spaces

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

- Algebras from Fischer spaces
- Vanishing sets
- Lie algebras
- Some computations

- Throughout the rest of this talk, let D be a class of 3-transpositions generating a 3-transposition group G, and Z(G) = 1.
- $o(de) = 3 \iff de \neq ed \iff d \neq d^e = e^d \neq e$
- The Fischer space Π(D) is the partial linear space with D as point set, and the triples {d, e, d^e} as lines (when o(de) = 3).

Fischer spaces

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

• Throughout the rest of this talk, let D be a class of 3-transpositions generating a 3-transposition group G, and Z(G) = 1.

•
$$o(de) = 3 \iff de \neq ed \iff d \neq d^e = e^d \neq e$$

• The Fischer space $\Pi(D)$ is the partial linear space with D as point set, and the triples $\{d, e, d^e\}$ as lines (when o(de) = 3).

Fischer spaces

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations • Throughout the rest of this talk, let D be a class of 3-transpositions generating a 3-transposition group G, and Z(G) = 1.

•
$$o(de) = 3 \iff de \neq ed \iff d \neq d^e = e^d \neq e$$

• The Fischer space $\Pi(D)$ is the partial linear space with D as point set, and the triples $\{d, e, d^e\}$ as lines (when o(de) = 3).

Characterizing Fischer spaces

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing set

Lie algebras

Some computations

Proposition (Buekenhout)

A partial linear space is a Fischer space if and only if every pair of intersecting lines generates a subspace isomorphic to the dual of an affine plane of order 2, or an affine plane of order 3.

Overview

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets Lie algebras

Some computations

3-transposition groups and Fischer spaces

2 Algebras from Fischer spaces

Vanishing sets

4 Lie algebras

5 Some computations

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing set

Lie algebras

Some computations

• Denote by $\mathbb{F}_2 D$ the \mathbb{F}_2 vector space with basis D.

- Vectors are finite subsets of *D*; sum of two sets is their symmetric difference.
- Define the 3-transposition algebra A(D) with underlying vector space F₂D; multiplication is linear expansion of multiplication defined on d, e ∈ D by

$$d * e := \begin{cases} d + e + e^d = \{d, e, e^d\} & \text{if } o(de) = 3\\ 0 & \text{otherwise.} \end{cases}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

From Fischer spaces to (Lie) algebras

Max Horn

3-transpositior groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Some computations

- Denote by $\mathbb{F}_2 D$ the \mathbb{F}_2 vector space with basis D.
- Vectors are finite subsets of *D*; sum of two sets is their symmetric difference.
- Define the 3-transposition algebra A(D) with underlying vector space 𝔽₂D; multiplication is linear expansion of multiplication defined on d, e ∈ D by

$$d * e := \begin{cases} d + e + e^d = \{d, e, e^d\} & \text{if } o(de) = 3\\ 0 & \text{otherwise.} \end{cases}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

- Denote by $\mathbb{F}_2 D$ the \mathbb{F}_2 vector space with basis D.
- Vectors are finite subsets of *D*; sum of two sets is their symmetric difference.
- Define the 3-transposition algebra A(D) with underlying vector space 𝔽₂D; multiplication is linear expansion of multiplication defined on d, e ∈ D by

$$d * e := egin{cases} d + e + e^d = \{d, e, e^d\} & ext{if } o(de) = 3 \\ 0 & ext{otherwise.} \end{cases}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

- Denote by $\mathbb{F}_2 D$ the \mathbb{F}_2 vector space with basis D.
- Vectors are finite subsets of *D*; sum of two sets is their symmetric difference.
- Define the 3-transposition algebra A(D) with underlying vector space 𝔽₂D; multiplication is linear expansion of multiplication defined on d, e ∈ D by

$$d * e := egin{cases} d + e + e^d = \{d, e, e^d\} & ext{if } o(de) = 3 \\ 0 & ext{otherwise.} \end{cases}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

- G acts on $\mathcal{A}(D)$ by conjugation: $(d_1 + \ldots + d_n)^g = d_1^g + \ldots + d_n^g.$
- Let V be a subset of A(D). Then I(V) denotes the ideal of A(D) generated by V.
 - Goal: Compute Lie algebra quotients with a G-action.
- $G = \langle D \rangle$, so I(V) is G-invariant if and only if for all $d \in D$, $X \in I(V)$ we have $X^d \in I(V)$.

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

- G acts on $\mathcal{A}(D)$ by conjugation: $(d_1 + \ldots + d_n)^g = d_1^g + \ldots + d_n^g$.
- Let V be a subset of A(D). Then I(V) denotes the ideal of A(D) generated by V.

• Goal: Compute Lie algebra quotients with a G-action.

• $G = \langle D \rangle$, so I(V) is G-invariant if and only if for all $d \in D$, $X \in I(V)$ we have $X^d \in I(V)$.

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

- G acts on $\mathcal{A}(D)$ by conjugation: $(d_1 + \ldots + d_n)^g = d_1^g + \ldots + d_n^g.$
- Let V be a subset of A(D). Then I(V) denotes the ideal of A(D) generated by V.
- Goal: Compute Lie algebra quotients with a G-action.
- $G = \langle D \rangle$, so I(V) is G-invariant if and only if for all $d \in D$, $X \in I(V)$ we have $X^d \in I(V)$.

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

- G acts on $\mathcal{A}(D)$ by conjugation: $(d_1 + \ldots + d_n)^g = d_1^g + \ldots + d_n^g.$
- Let V be a subset of A(D). Then I(V) denotes the ideal of A(D) generated by V.
- Goal: Compute Lie algebra quotients with a G-action.
- $G = \langle D \rangle$, so I(V) is G-invariant if and only if for all $d \in D$, $X \in I(V)$ we have $X^d \in I(V)$.

Overview

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

3 Vanishing sets

4 Lie algebras

5 Some computations

From Fischer spaces to (Lie) algebras

Max Horn

3-transpositior groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

• For
$$d \in D$$
 set $A_d := d^{\perp} \setminus \{d\} = \{e \in D \mid de \neq ed\}.$

.emma

Let X be a finite subset of D and $d \in D$. Then

 $d * X = X + X^d + (|A_d \cap X| \mod 2)d.$

- X is called vanishing set if $|A_d \cap X|$ is even for all $d \in D$.
- Examples: Empty set; point sets of finite maximal linear subspaces of Π(D) (they have odd size); ...
- Vanishing ideals are ideals generated by vanishing sets.

・ロット (雪) (日) (日) 日

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

• For
$$d \in D$$
 set $A_d := d^{\perp} \setminus \{d\} = \{e \in D \mid de \neq ed\}.$

Lemma

Let X be a finite subset of D and $d \in D$. Then

$$d * X = X + X^d + (|A_d \cap X| \mod 2)d.$$

- X is called vanishing set if $|A_d \cap X|$ is even for all $d \in D$.
- Examples: Empty set; point sets of finite maximal linear subspaces of Π(D) (they have odd size); ...
- Vanishing ideals are ideals generated by vanishing sets.

- 日本 - 1 日本 - 1 日本 - 1 日本

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

• For
$$d \in D$$
 set $A_d := d^{\perp} \setminus \{d\} = \{e \in D \mid de \neq ed\}.$

Lemma

Let X be a finite subset of D and $d \in D$. Then

$$d * X = X + X^d + (|A_d \cap X| \mod 2)d.$$

- X is called vanishing set if $|A_d \cap X|$ is even for all $d \in D$.
- Examples: Empty set; point sets of finite maximal linear subspaces of Π(D) (they have odd size); ...
- Vanishing ideals are ideals generated by vanishing sets.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

• For
$$d \in D$$
 set $A_d := d^{\perp} \setminus \{d\} = \{e \in D \mid de \neq ed\}.$

Lemma

Let X be a finite subset of D and $d \in D$. Then

$$d * X = X + X^d + (|A_d \cap X| \mod 2)d.$$

- X is called vanishing set if $|A_d \cap X|$ is even for all $d \in D$.
- Examples: Empty set; point sets of finite maximal linear subspaces of Π(D) (they have odd size); ...
- Vanishing ideals are ideals generated by vanishing sets.

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

• For
$$d \in D$$
 set $A_d := d^{\perp} \setminus \{d\} = \{e \in D \mid de \neq ed\}.$

Lemma

Let X be a finite subset of D and $d \in D$. Then

$$d * X = X + X^d + (|A_d \cap X| \mod 2)d.$$

- X is called vanishing set if $|A_d \cap X|$ is even for all $d \in D$.
- Examples: Empty set; point sets of finite maximal linear subspaces of Π(D) (they have odd size); ...
- Vanishing ideals are ideals generated by vanishing sets.

 Any vanishing ideal *I* is *G*-invariant: If X ∈ I then *d* ∗ X ∈ I hence {X^d | *d* ∈ D} ∈ I.

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

• For
$$d \in D$$
 set $A_d := d^{\perp} \setminus \{d\} = \{e \in D \mid de \neq ed\}.$

Lemma

Let X be a finite subset of D and $d \in D$. Then

$$d * X = X + X^d + (|A_d \cap X| \mod 2)d.$$

- X is called vanishing set if $|A_d \cap X|$ is even for all $d \in D$.
- Examples: Empty set; point sets of finite maximal linear subspaces of Π(D) (they have odd size); ...
- Vanishing ideals are ideals generated by vanishing sets.

The maximal vanishing ideal

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

Let \mathcal{V} be the ideal of \mathcal{A} generated by *all* vanishing subsets of D.

.emma

V equals the linear span of all vanishing subsets of D.
 V is a proper ideal.

Idea of proof:

() Follows from the fact that \mathcal{V} is *G*-invariant.

Obtaine a symplectic form ⟨·|·⟩ on A(D): Set ⟨d|e⟩ = 1 if de ≠ ed and 0 otherwise; extend linearly. This form is non-zero if there are lines (i.e. if G is non-abelian).

If X is a vanishing set, then $\langle d|X \rangle = 0$. So \mathcal{V} is in the radical of $\langle \cdot | \cdot \rangle$ and hence a proper subspace of $\mathcal{A}(D)$.

The maximal vanishing ideal

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

Let \mathcal{V} be the ideal of \mathcal{A} generated by *all* vanishing subsets of D.

Lemma

V equals the linear span of all vanishing subsets of D.
V is a proper ideal.

Idea of proof:

() Follows from the fact that \mathcal{V} is *G*-invariant.

Obtained a symplectic form ⟨·|·⟩ on A(D): Set ⟨d|e⟩ = 1 if de ≠ ed and 0 otherwise; extend linearly. This form is non-zero if there are lines (i.e. if G is non-abelian).

If X is a vanishing set, then $\langle d|X \rangle = 0$. So \mathcal{V} is in the radical of $\langle \cdot | \cdot \rangle$ and hence a proper subspace of $\mathcal{A}(D)$.

The maximal vanishing ideal

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations Let \mathcal{V} be the ideal of \mathcal{A} generated by *all* vanishing subsets of D.

Lemma

V equals the linear span of all vanishing subsets of D.
V is a proper ideal.

Idea of proof:

- **(**) Follows from the fact that \mathcal{V} is *G*-invariant.
- ② Define a symplectic form ⟨·|·⟩ on A(D): Set ⟨d|e⟩ = 1 if de ≠ ed and 0 otherwise; extend linearly. This form is non-zero if there are lines (i.e. if G is non-abelian).

If X is a vanishing set, then $\langle d|X \rangle = 0$. So \mathcal{V} is in the radical of $\langle \cdot | \cdot \rangle$ and hence a proper subspace of $\mathcal{A}(D)$.

Proper G-invariant ideals are vanishing

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

Lemma

Any G-invariant proper ideal of $\mathcal{A}(D)$ is contained in \mathcal{V} .

Proof:

Assume a *G*-invariant ideal *I* containing a non-vanishing set *X*. There is $d \in D$ such that $d * X = d + X + X^d \in I$. But *I* is *G*-invariant, thus $X^d \in I$ and so $d \in I$ and $d^G = D \subseteq I = A$.

Proposition

Suppose Q is a simple quotient algebra of $\mathcal{A}(D)$. If G induces a group of automorphisms on Q, then Q is isomorphic to $\mathcal{A}(D)/\mathcal{V}$.

Proper G-invariant ideals are vanishing

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

Lemma

Any G-invariant proper ideal of $\mathcal{A}(D)$ is contained in \mathcal{V} .

Proof:

Assume a *G*-invariant ideal *I* containing a non-vanishing set *X*. There is $d \in D$ such that $d * X = d + X + X^d \in I$. But *I* is *G*-invariant, thus $X^d \in I$ and so $d \in I$ and $d^G = D \subseteq I = A$.

Proposition

Suppose Q is a simple quotient algebra of $\mathcal{A}(D)$. If G induces a group of automorphisms on Q, then Q is isomorphic to $\mathcal{A}(D)/\mathcal{V}$.

Proper G-invariant ideals are vanishing

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

Lemma

Any G-invariant proper ideal of $\mathcal{A}(D)$ is contained in \mathcal{V} .

Proof:

Assume a *G*-invariant ideal *I* containing a non-vanishing set *X*. There is $d \in D$ such that $d * X = d + X + X^d \in I$. But *I* is *G*-invariant, thus $X^d \in I$ and so $d \in I$ and $d^G = D \subseteq I = A$.

Proposition

Suppose Q is a simple quotient algebra of $\mathcal{A}(D)$. If G induces a group of automorphisms on Q, then Q is isomorphic to $\mathcal{A}(D)/\mathcal{V}$.

Overview

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

3 Vanishing sets

4 Lie algebras

5 Some computations

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● ⑦ � ⑦

Lie algebras from Fischer spaces

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

When is (a quotient of) $\mathcal{A}(D)$ a Lie algebra?

Lemma

Let I be an ideal of $\mathcal{A}(D)$. Then $\mathcal{A}(D)/I$ is a Lie algebra, if and only if every affine plane π of $\Pi(D)$ is in I.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If there are no affine planes, then $\mathcal{A}(D)$ is a Lie algebra and $\mathcal{A}(D)/\mathcal{V}$ is an abelian Lie algebra.

If affine planes are not vanishing sets, then no non-trivial quotient of $\mathcal{A}(D)$ is a Lie algebra.

Lie algebras from Fischer spaces

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

When is (a quotient of) $\mathcal{A}(D)$ a Lie algebra?

Lemma

Let I be an ideal of $\mathcal{A}(D)$. Then $\mathcal{A}(D)/I$ is a Lie algebra, if and only if every affine plane π of $\Pi(D)$ is in I.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

If there are no affine planes, then $\mathcal{A}(D)$ is a Lie algebra and $\mathcal{A}(D)/\mathcal{V}$ is an abelian Lie algebra.

If affine planes are not vanishing sets, then no non-trivial quotient of $\mathcal{A}(D)$ is a Lie algebra.

Lie algebras from Fischer spaces

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations

When is (a quotient of) $\mathcal{A}(D)$ a Lie algebra?

Lemma

Let I be an ideal of $\mathcal{A}(D)$. Then $\mathcal{A}(D)/I$ is a Lie algebra, if and only if every affine plane π of $\Pi(D)$ is in I.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

If there are no affine planes, then $\mathcal{A}(D)$ is a Lie algebra and $\mathcal{A}(D)/\mathcal{V}$ is an abelian Lie algebra.

If affine planes are not vanishing sets, then no non-trivial quotient of $\mathcal{A}(D)$ is a Lie algebra.

From Fischer spaces to (Lie) algebras

Theorem

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $\mathcal{A}(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $\mathcal{A}(D)/\mathcal{V}$ is isomorphic to one of the following:

PΩ₆ (3). 2 $D_n(2)$ if $G = 3^n : W(D_n)$ and n odd.

D_n(2) If G = 3'': $W(D_n)$ and n even; for n = 4 also $P\Omega_8^+(2)$: Sym₃.

• ${}^{2}E_{6}(2)$ if $G = 3^{6}$: $W(E_{6})$ or $P\Omega_{7}(3)$ or Fi_{22} .

• $E_7(2)$, $E_8(2)$ if $G = 3^n : W(E_n)$.

From Fischer spaces to (Lie) algebras

Theorem

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $\mathcal{A}(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $\mathcal{A}(D)/\mathcal{V}$ is isomorphic to one of the following:

- ${}^{2}A_{n}(2)$ if $G = 3^{n}$: $W(A_{n})$ or $SU_{n+1}(2)$; for n = 5 also $P\Omega_{6}^{-}(3)$.
 - 2) ${}^{2}D_{n}(2)$ if $G = 3^{n}$: $W(D_{n})$ and n odd.
- $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for n = 4 also $P\Omega_8^+(2) : Sym_3$.

• ${}^{2}E_{6}(2)$ if $G = 3^{6}$: $W(E_{6})$ or $P\Omega_{7}(3)$ or Fi_{22} .

• $E_7(2)$, $E_8(2)$ if $G = 3^n : W(E_n)$.

From Fischer spaces to (Lie) algebras

Theorem

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $\mathcal{A}(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $\mathcal{A}(D)/\mathcal{V}$ is isomorphic to one of the following:

• ${}^{2}A_{n}(2)$ if $G = 3^{n}$: $W(A_{n})$ or $SU_{n+1}(2)$; for n = 5 also $P\Omega_{6}^{-}(3)$.

2 ${}^{2}D_{n}(2)$ if $G = 3^{n}$: $W(D_{n})$ and n odd.

(a) $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for n = 4 also $P\Omega_8^+(2) : Sym_3$.

• ${}^{2}E_{6}(2)$ if $G = 3^{6}$: $W(E_{6})$ or $P\Omega_{7}(3)$ or Fi_{22} .

• $E_7(2)$, $E_8(2)$ if $G = 3^n : W(E_n)$.

From Fischer spaces to (Lie) algebras

Theorem

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $\mathcal{A}(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $\mathcal{A}(D)/\mathcal{V}$ is isomorphic to one of the following:

• ${}^{2}A_{n}(2)$ if $G = 3^{n}$: $W(A_{n})$ or $SU_{n+1}(2)$; for n = 5 also $P\Omega_{6}^{-}(3)$.

2 ${}^{2}D_{n}(2)$ if $G = 3^{n}$: $W(D_{n})$ and n odd.

• $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for n = 4 also $P\Omega_8^+(2) : Sym_3$.

• ${}^{2}E_{6}(2)$ if $G = 3^{6}$: $W(E_{6})$ or $P\Omega_{7}(3)$ or Fi_{22} .

5 $E_7(2)$, $E_8(2)$ if $G = 3^n : W(E_n)$.

From Fischer spaces to (Lie) algebras

Theorem

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $\mathcal{A}(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $\mathcal{A}(D)/\mathcal{V}$ is isomorphic to one of the following:

• ${}^{2}A_{n}(2)$ if $G = 3^{n}$: $W(A_{n})$ or $SU_{n+1}(2)$; for n = 5 also $P\Omega_{6}^{-}(3)$.

2 ${}^{2}D_{n}(2)$ if $G = 3^{n}$: $W(D_{n})$ and n odd.

- $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for n = 4 also $P\Omega_8^+(2) : Sym_3$.
- ${}^{2}E_{6}(2)$ if $G = 3^{6}$: $W(E_{6})$ or $P\Omega_{7}(3)$ or Fi_{22} .

5 $E_7(2)$, $E_8(2)$ if $G = 3^n : W(E_n)$.

From Fischer spaces to (Lie) algebras

Theorem

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $\mathcal{A}(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $\mathcal{A}(D)/\mathcal{V}$ is isomorphic to one of the following:

• ${}^{2}A_{n}(2)$ if $G = 3^{n}$: $W(A_{n})$ or $SU_{n+1}(2)$; for n = 5 also $P\Omega_{6}^{-}(3)$.

2 ${}^{2}D_{n}(2)$ if $G = 3^{n} : W(D_{n})$ and n odd.

- $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for n = 4 also $P\Omega_8^+(2) : Sym_3$.
- $^{2}E_{6}(2)$ if $G = 3^{6}$: $W(E_{6})$ or $P\Omega_{7}(3)$ or Fi_{22} .
- **5** $E_7(2)$, $E_8(2)$ if $G = 3^n : W(E_n)$.

Overview

From Fischer spaces to (Lie) algebras

Max Horn

- 3-transposition groups and Fischer spaces
- Algebras from Fischer spaces
- Vanishing sets
- Lie algebras
- Some computations

3-transposition groups and Fischer spaces

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

3

- 2 Algebras from Fischer spaces
- 3 Vanishing sets
- 4 Lie algebras
- **5** Some computations

Unitary groups

From Fischer spaces to	L_{max} denotes the maximal Lie algebra quotient of $\mathcal{A}(D)$.				
(Lie) algebras Max Horn	G	D	dim L_{max}	$\dim \mathcal{A}(D)/\mathcal{V}$	
3-transposition	$U_{2}(2)$	3	3	2	
groups and Fischer spaces	$U_{3}(2)$	9	8	8	
Algebras from	$U_{4}(2)$	45	30	14	
Fischer spaces	$U_{5}(2)$	165	45	24	
Vanishing sets	$U_{6}(2)$	693	78	34	
Lie algebras	$U_7(2)$	2709	119	48	
Some computations	$U_{8}(2)$	10789	176	62	
	U ₉ (2)	43356	249	80	
	$U_{10}(2)$	174933	340	98	
	$U_{11}(2)$?	?	120	
	$U_n(2)$	$\frac{1}{6}(4^n+(-2)^n-2)$???	$n^2 - 2 + (n \mod 2)$	

In fact, $\mathcal{A}(D)/\mathcal{V} \cong {}^2A_n(2)$ holds.

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Sporadic cases

From Fischer spaces to (Lie) algebras

Max Horn

3-transpositior groups and Fischer spaces

Algebras from Fischer space

Vanishing sets

Lie algebras

Some computations

 L_{max} denotes the maximal Lie algebra quotient of $\mathcal{A}(D)$.

G	D	$\dim L_{max}$	$\dim \mathcal{A}(D)/\mathcal{V}$	
$O^+(8,2)$: Sym ₃	360	52	26	
$O^+(8,3)$: Sym ₃	3240	0	782	
Fi ₂₂	3510	78	78	
Fi ₂₃	31671	0	782	
Fi ₂₄	306936	0	3774	

For $O^+(8,2)$: Sym₃ we get the simple Lie algebra $D_4(2)$ and for Fi₂₂ the simple Lie algebra ${}^2E_6(2)$.

In the other cases, we do not get Lie algebras, but still a non-trivial algebra structure.

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer space

Vanishing sets

Lie algebras

Some computations

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○