From Fischer spaces to (Lie) algebras

Max Horn

joint work with
H. Cuypers, J. in ’t panhuis, S. Shpectorov

Technische Universität Braunschweig

Buildings 2010
Overview

1. 3-transposition groups and Fischer spaces
2. Algebras from Fischer spaces
3. Vanishing sets
4. Lie algebras
5. Some computations
Overview

1. 3-transposition groups and Fischer spaces
2. Algebras from Fischer spaces
3. Vanishing sets
4. Lie algebras
5. Some computations
3-transposition groups

A class of 3-transpositions in a group G is a conjugacy class D of G such that

1. the elements of D are involutions and
2. for all $d, e \in D$ the order of de is equal to 1, 2 or 3.

G is called 3-transposition group if $G = \langle D \rangle$.

Examples

- Transpositions in $G = \text{Sym}(n)$; $D = (12)^G$
- Transvections in $G = \text{U}(n,2)$; $D = d^G$ where

 $$d = \begin{pmatrix}
 0 & 0 & \ldots & 0 & 1 \\
 0 & 1 & \ldots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \ldots & 1 & 0 \\
 1 & 0 & \ldots & 0 & 0
 \end{pmatrix}$$
 (in GAP’s version of this group)
- Fi_{22}, Fi_{23}, Fi_{24} (note: the simple group is Fi'_{24})
3-transposition groups

A class of 3-transpositions in a group G is a conjugacy class D of G such that

1. the elements of D are involutions and
2. for all $d, e \in D$ the order of de is equal to 1, 2 or 3.

G is called 3-transposition group if $G = \langle D \rangle$.

Examples

- Transpositions in $G = \text{Sym}(n)$; $D = (12)^G$
- Transvections in $G = \text{U}(n, 2)$; $D = d^G$ where
 \[
 d = \begin{pmatrix}
 0 & 0 & \cdots & 0 & 1 \\
 0 & 1 & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & 1 & 0 \\
 1 & 0 & \cdots & 0 & 0
 \end{pmatrix}
 \]
 (in GAP’s version of this group)
- $\text{Fi}_{22}, \text{Fi}_{23}, \text{Fi}_{24}$ (note: the simple group is Fi'_{24})
3-transposition groups

A **class of 3-transpositions** in a group G is a conjugacy class D of G such that

1. the elements of D are involutions and
2. for all $d, e \in D$ the order of de is equal to 1, 2 or 3.

G is called a **3-transposition group** if $G = \langle D \rangle$.

Examples

- Transpositions in $G = \text{Sym}(n)$; $D = (12)^G$
- Transvections in $G = \text{U}(n, 2)$; $D = d^G$ where
 \[
 d = \begin{pmatrix}
 0 & 0 & \cdots & 0 & 1 \\
 0 & 1 & \cdots & 0 & 0 \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 0 & 0 & \cdots & 1 & 0 \\
 1 & 0 & \cdots & 0 & 0
 \end{pmatrix}
 \]
 (in GAP’s version of this group)
- Fi_{22}, Fi_{23}, Fi_{24} (note: the simple group is Fi_{24}')
A class of 3-transpositions in a group G is a conjugacy class D of G such that

1. the elements of D are involutions and
2. for all $d, e \in D$ the order of de is equal to 1, 2 or 3.

G is called 3-transposition group if $G = \langle D \rangle$.

Examples

- Transpositions in $G = \text{Sym}(n); D = (12)^G$
- Transvections in $G = \text{U}(n, 2); D = d^G$ where
 \[
 d = \begin{pmatrix}
 0 & 0 & \cdots & 0 & 1 \\
 0 & 1 & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & 1 & 0 \\
 1 & 0 & \cdots & 0 & 0
 \end{pmatrix}
 \]
 (in GAP's version of this group)
- $\text{Fi}_{22}, \text{Fi}_{23}, \text{Fi}_{24}$ (note: the simple group is Fi'_{24})
Classify 3-transposition groups

Fischer (around 1970) classified finite 3-transposition groups with no non-trivial normal solvable subgroups.

Cuypers and Hall (90s) classified all (possibly infinite) 3-transposition groups with trivial center, using geometric methods (Fischer spaces).

Cuypers and Hall: If center is non-trivial, then $G/Z(G)$ is 3-transposition group with trivial center.
Fischer (around 1970) classified finite 3-transposition groups with no non-trivial normal solvable subgroups. This is equivalent to the classification of finite simple groups.

Cuypers and Hall (90s) classified all (possibly infinite) 3-transposition groups with trivial center, using geometric methods (Fischer spaces).

Cuypers and Hall: If center is non-trivial, then $G/Z(G)$ is a 3-transposition group with trivial center.
Fischer (around 1970) classified finite 3-transposition groups with no non-trivial normal solvable subgroups. Classification of finite simple groups.

Cuypers and Hall (90s) classified all (possibly infinite) 3-transposition groups with trivial center, using geometric methods (Fischer spaces).

Cuypers and Hall: If center is non-trivial, then $G/Z(G)$ is 3-transposition group with trivial center.
Throughout the rest of this talk, let D be a class of 3-transpositions generating a 3-transposition group G, and $Z(G) = 1$.

- $o(de) = 3 \iff de \neq ed \iff d \neq d^e = e^d \neq e$

- The Fischer space $\Pi(D)$ is the partial linear space with D as point set, and the triples $\{d, e, d^e\}$ as lines (when $o(de) = 3$).
Throughout the rest of this talk, let D be a class of 3-transpositions generating a 3-transposition group G, and $Z(G) = 1$.

$$o(de) = 3 \iff de \neq ed \iff d \neq d^e = e^d \neq e$$

The Fischer space $\Pi(D)$ is the partial linear space with D as point set, and the triples $\{d, e, d^e\}$ as lines (when $o(de) = 3$).
Throughout the rest of this talk, let D be a class of 3-transpositions generating a 3-transposition group G, and $Z(G) = 1$.

- $o(de) = 3 \iff de \neq ed \iff d \neq d^e = e^d \neq e$

The Fischer space $\Pi(D)$ is the partial linear space with D as point set, and the triples $\{d, e, d^e\}$ as lines (when $o(de) = 3$).
Proposition (Buekenhout)

A partial linear space is a Fischer space if and only if every pair of intersecting lines generates a subspace isomorphic to the dual of an affine plane of order 2, or an affine plane of order 3.
Overview

1. 3-transposition groups and Fischer spaces
2. Algebras from Fischer spaces
3. Vanishing sets
4. Lie algebras
5. Some computations
Denote by $\mathbb{F}_2 D$ the \mathbb{F}_2 vector space with basis D.

- Vectors are finite subsets of D; sum of two sets is their symmetric difference.

- Define the 3-transposition algebra $\mathcal{A}(D)$ with underlying vector space $\mathbb{F}_2 D$; multiplication is linear expansion of multiplication defined on $d, e \in D$ by

\[
 d \ast e := \begin{cases}
 d + e + e^d = \{d, e, e^d\} & \text{if } o(de) = 3 \\
 0 & \text{otherwise.}
\end{cases}
\]

- $\mathcal{A}(D)$ is a non-associative commutative algebra.
Denote by $\mathbb{F}_2 D$ the \mathbb{F}_2 vector space with basis D.

Vectors are finite subsets of D; sum of two sets is their symmetric difference.

Define the 3-transposition algebra $A(D)$ with underlying vector space $\mathbb{F}_2 D$; multiplication is linear expansion of multiplication defined on $d, e \in D$ by

$$d \ast e := \begin{cases} d + e + e^d = \{d, e, e^d\} & \text{if } o(de) = 3 \\ 0 & \text{otherwise.} \end{cases}$$

$A(D)$ is a non-associative commutative algebra.
Denote by $\mathbb{F}_2 D$ the \mathbb{F}_2 vector space with basis D.

Vectors are finite subsets of D; sum of two sets is their symmetric difference.

Define the 3-transposition algebra $A(D)$ with underlying vector space $\mathbb{F}_2 D$; multiplication is linear expansion of multiplication defined on $d, e \in D$ by

$$d \ast e := \begin{cases} d + e + e^d = \{d, e, e^d\} & \text{if } o(de) = 3 \\ 0 & \text{otherwise.} \end{cases}$$

$A(D)$ is a non-associative commutative algebra.
Algebras from Fischer spaces

- Denote by $\mathbb{F}_2 D$ the \mathbb{F}_2 vector space with basis D.

- Vectors are finite subsets of D; sum of two sets is their symmetric difference.

- Define the 3-transposition algebra $\mathcal{A}(D)$ with underlying vector space $\mathbb{F}_2 D$; multiplication is linear expansion of multiplication defined on $d, e \in D$ by

$$d * e := \begin{cases} d + e + e^d = \{d, e, e^d\} & \text{if } o(de) = 3 \\ 0 & \text{otherwise.} \end{cases}$$

- $\mathcal{A}(D)$ is a non-associative commutative algebra.
Group action on $\mathcal{A}(D)$

- G acts on $\mathcal{A}(D)$ by conjugation:
 $$(d_1 + \ldots + d_n)^g = d_1^g + \ldots + d_n^g.$$

- Let V be a subset of $\mathcal{A}(D)$. Then $I(V)$ denotes the ideal of $\mathcal{A}(D)$ generated by V.

- Goal: Compute Lie algebra quotients with a G-action.

- $G = \langle D \rangle$, so $I(V)$ is G-invariant if and only if for all $d \in D$, $X \in I(V)$ we have $X^d \in I(V)$.

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations
Group action on $\mathcal{A}(D)$

- G acts on $\mathcal{A}(D)$ by conjugation:
 \[(d_1 + \ldots + d_n)^g = d_1^g + \ldots + d_n^g.\]

- Let V be a subset of $\mathcal{A}(D)$. Then $I(V)$ denotes the ideal of $\mathcal{A}(D)$ generated by V.

- Goal: Compute Lie algebra quotients with a G-action.

- $G = \langle D \rangle$, so $I(V)$ is G-invariant if and only if for all $d \in D$, $X \in I(V)$ we have $X^d \in I(V)$.
Group action on $\mathcal{A}(D)$

- G acts on $\mathcal{A}(D)$ by conjugation:
 $$(d_1 + \ldots + d_n)^g = d_1^g + \ldots + d_n^g.$$

- Let V be a subset of $\mathcal{A}(D)$. Then $I(V)$ denotes the ideal of $\mathcal{A}(D)$ generated by V.

- Goal: Compute Lie algebra quotients with a G-action.

- $G = \langle D \rangle$, so $I(V)$ is G-invariant if and only if for all $d \in D$, $X \in I(V)$ we have $X^d \in I(V)$.

From Fischer spaces to (Lie) algebras

Max Horn

3-transposition groups and Fischer spaces

Algebras from Fischer spaces

Vanishing sets

Lie algebras

Some computations
Group action on $A(D)$

- G acts on $A(D)$ by conjugation:
 $$(d_1 + \ldots + d_n)^g = d_1^g + \ldots + d_n^g.$$

- Let V be a subset of $A(D)$. Then $I(V)$ denotes the ideal of $A(D)$ generated by V.

- Goal: Compute Lie algebra quotients with a G-action.

- $G = \langle D \rangle$, so $I(V)$ is G-invariant if and only if for all $d \in D$, $X \in I(V)$ we have $X^d \in I(V)$.

Overview

1. 3-transposition groups and Fischer spaces
2. Algebras from Fischer spaces
3. Vanishing sets
4. Lie algebras
5. Some computations
For \(d \in D \) set \(A_d := d^\perp \setminus \{d\} = \{e \in D \mid de \neq ed\} \).

Lemma

Let \(X \) be a finite subset of \(D \) and \(d \in D \). Then

\[
d \ast X = X + X^d + (|A_d \cap X| \mod 2)d.
\]

- \(X \) is called **vanishing set** if \(|A_d \cap X| \) is even for all \(d \in D \).
- Examples: Empty set; point sets of finite maximal linear subspaces of \(\Pi(D) \) (they have odd size); …
- **Vanishing ideals** are ideals generated by vanishing sets.
- Any vanishing ideal \(I \) is \(G \)-invariant: If \(X \in I \) then \(d \ast X \in I \) hence \(\{X^d \mid d \in D\} \in I \).
Vanishing sets

- For $d \in D$ set $A_d := d^\perp \setminus \{d\} = \{e \in D \mid de \neq ed\}$.

Lemma

Let X be a finite subset of D and $d \in D$. Then

$$d \ast X = X + X^d + (|A_d \cap X| \mod 2)d.$$

- X is called **vanishing set** if $|A_d \cap X|$ is even for all $d \in D$.
- Examples: Empty set; point sets of finite maximal linear subspaces of $\Pi(D)$ (they have odd size); ...
- **Vanishing ideals** are ideals generated by vanishing sets.
- Any vanishing ideal I is G-invariant: If $X \in I$ then $d \ast X \in I$ hence $\{X^d \mid d \in D\} \in I.$
Vanishing sets

- For $d \in D$ set $A_d := d^\perp \setminus \{d\} = \{e \in D \mid de \neq ed\}$.

Lemma

Let X be a finite subset of D and $d \in D$. Then

$$d \ast X = X + X^d + (|A_d \cap X| \mod 2)d.$$

- X is called **vanishing set** if $|A_d \cap X|$ is even for all $d \in D$.

- Examples: Empty set; point sets of finite maximal linear subspaces of $\Pi(D)$ (they have odd size); ...

- Vanishing ideals are ideals generated by vanishing sets.

- Any vanishing ideal I is G-invariant: If $X \in I$ then $d \ast X \in I$ hence $\{X^d \mid d \in D\} \in I$.
Vanishing sets

- For $d \in D$ set $A_d := d^\perp \setminus \{d\} = \{e \in D \mid de \neq ed\}$.

Lemma

Let X be a finite subset of D and $d \in D$. Then

$$d \ast X = X + X^d + (|A_d \cap X| \mod 2)d.$$

- X is called **vanishing set** if $|A_d \cap X|$ is even for all $d \in D$.

- **Examples**: Empty set; point sets of finite maximal linear subspaces of $\Pi(D)$ (they have odd size); ...

- **Vanishing ideals** are ideals generated by vanishing sets.

- **Any vanishing ideal** I is G-invariant: If $X \in I$ then $d \ast X \in I$ hence $\{X^d \mid d \in D\} \in I.$
Vanishing sets

- For \(d \in D \) set \(A_d := d^\perp \setminus \{d\} = \{ e \in D \mid de \neq ed \} \).

Lemma

Let \(X \) be a finite subset of \(D \) and \(d \in D \). Then

\[
d * X = X + X^d + (|A_d \cap X| \mod 2)d.
\]

- \(X \) is called **vanishing set** if \(|A_d \cap X| \) is even for all \(d \in D \).

- Examples: Empty set; point sets of finite maximal linear subspaces of \(\Pi(D) \) (they have odd size); ...

- **Vanishing ideals** are ideals generated by vanishing sets.

- Any vanishing ideal \(I \) is \(G \)-invariant: If \(X \in I \) then \(d * X \in I \) hence \(\{X^d \mid d \in D\} \in I \).
Vanishing sets

- For $d \in D$ set $A_d := d^\perp \setminus \{d\} = \{e \in D \mid de \neq ed\}$.

Lemma

Let X be a finite subset of D and $d \in D$. Then

$$d \ast X = X + X^d + (|A_d \cap X| \mod 2)d.$$

- X is called **vanishing set** if $|A_d \cap X|$ is even for all $d \in D$.

- Examples: Empty set; point sets of finite maximal linear subspaces of $\Pi(D)$ (they have odd size); ...

- **Vanishing ideals** are ideals generated by vanishing sets.

- Any vanishing ideal I is G-invariant: If $X \in I$ then $d \ast X \in I$ hence $\{X^d \mid d \in D\} \in I$.

The maximal vanishing ideal

Let \mathcal{V} be the ideal of \mathcal{A} generated by all vanishing subsets of D.

Lemma

1. \mathcal{V} equals the linear span of all vanishing subsets of D.
2. \mathcal{V} is a proper ideal.

Idea of proof:

1. Follows from the fact that \mathcal{V} is G-invariant.
2. Define a symplectic form $\langle \cdot | \cdot \rangle$ on $\mathcal{A}(D)$: Set $\langle d | e \rangle = 1$ if $de \neq ed$ and 0 otherwise; extend linearly. This form is non-zero if there are lines (i.e. if G is non-abelian).

If X is a vanishing set, then $\langle d | X \rangle = 0$. So \mathcal{V} is in the radical of $\langle \cdot | \cdot \rangle$ and hence a proper subspace of $\mathcal{A}(D)$.
The maximal vanishing ideal

Let \mathcal{V} be the ideal of \mathcal{A} generated by all vanishing subsets of D.

Lemma

1. \mathcal{V} equals the linear span of all vanishing subsets of D.
2. \mathcal{V} is a proper ideal.

Idea of proof:

1. Follows from the fact that \mathcal{V} is G-invariant.
2. Define a symplectic form $\langle \cdot | \cdot \rangle$ on $\mathcal{A}(D)$: Set $\langle d | e \rangle = 1$ if $de \neq ed$ and 0 otherwise; extend linearly. This form is non-zero if there are lines (i.e. if G is non-abelian).

If X is a vanishing set, then $\langle d | X \rangle = 0$. So \mathcal{V} is in the radical of $\langle \cdot | \cdot \rangle$ and hence a proper subspace of $\mathcal{A}(D)$.
Let \mathcal{V} be the ideal of \mathcal{A} generated by all vanishing subsets of D.

Lemma

1. \mathcal{V} equals the linear span of all vanishing subsets of D.
2. \mathcal{V} is a proper ideal.

Idea of proof:

1. Follows from the fact that \mathcal{V} is G-invariant.
2. Define a symplectic form $\langle \cdot | \cdot \rangle$ on $\mathcal{A}(D)$: Set $\langle d | e \rangle = 1$ if $de \neq ed$ and 0 otherwise; extend linearly. This form is non-zero if there are lines (i.e. if G is non-abelian).

If X is a vanishing set, then $\langle d | X \rangle = 0$. So \mathcal{V} is in the radical of $\langle \cdot | \cdot \rangle$ and hence a proper subspace of $\mathcal{A}(D)$.
Proper G-invariant ideals are vanishing

Lemma

Any G-invariant proper ideal of $\mathcal{A}(D)$ is contained in $\mathcal{V}.

Proof:

Assume a G-invariant ideal I containing a non-vanishing set X. There is $d \in D$ such that $d \ast X = d + X + X^d \in I$. But I is G-invariant, thus $X^d \in I$ and so $d \in I$ and $d^G = D \subseteq I = \mathcal{A}$.

Proposition

Suppose Q is a simple quotient algebra of $\mathcal{A}(D)$. If G induces a group of automorphisms on Q, then Q is isomorphic to $\mathcal{A}(D)/\mathcal{V}.
Proper G-invariant ideals are vanishing

Lemma

*Any G-invariant proper ideal of $\mathcal{A}(D)$ is contained in \mathcal{V}.***

Proof:
Assume a G-invariant ideal I containing a non-vanishing set X. There is $d \in D$ such that $d \ast X = d + X + X^d \in I$. But I is G-invariant, thus $X^d \in I$ and so $d \in I$ and $d^G = D \subseteq I = \mathcal{A}$.

Proposition

*Suppose Q is a simple quotient algebra of $\mathcal{A}(D)$. If G induces a group of automorphisms on Q, then Q is isomorphic to $\mathcal{A}(D)/\mathcal{V}$.***
Proper G-invariant ideals are vanishing

Lemma

Any G-invariant proper ideal of $A(D)$ is contained in \mathcal{V}.

Proof:
Assume a G-invariant ideal I containing a non-vanishing set X. There is $d \in D$ such that $d \ast X = d + X + X^d \in I$. But I is G-invariant, thus $X^d \in I$ and so $d \in I$ and $d^G = D \subseteq I = A$.

Proposition

Suppose Q is a simple quotient algebra of $A(D)$. If G induces a group of automorphisms on Q, then Q is isomorphic to $A(D)/\mathcal{V}$.
Overview

1. 3-transposition groups and Fischer spaces
2. Algebras from Fischer spaces
3. Vanishing sets
4. Lie algebras
5. Some computations
Lie algebras from Fischer spaces

When is (a quotient of) $A(D)$ a Lie algebra?

Lemma

Let I be an ideal of $A(D)$. Then $A(D)/I$ is a Lie algebra, if and only if every affine plane π of $\Pi(D)$ is in I.

If there are no affine planes, then $A(D)$ is a Lie algebra and $A(D)/\mathcal{V}$ is an abelian Lie algebra.

If affine planes are not vanishing sets, then no non-trivial quotient of $A(D)$ is a Lie algebra.
When is (a quotient of) $A(D)$ a Lie algebra?

Lemma

Let I be an ideal of $A(D)$. Then $A(D)/I$ is a Lie algebra, if and only if every affine plane π of $\Pi(D)$ is in I.

If there are no affine planes, then $A(D)$ is a Lie algebra and $A(D)/\mathcal{V}$ is an abelian Lie algebra.

If affine planes are not vanishing sets, then no non-trivial quotient of $A(D)$ is a Lie algebra.
When is (a quotient of) $A(D)$ a Lie algebra?

Lemma

Let I be an ideal of $A(D)$. Then $A(D)/I$ is a Lie algebra, if and only if every affine plane π of $\Pi(D)$ is in I.

If there are no affine planes, then $A(D)$ is a Lie algebra and $A(D)/\mathcal{V}$ is an abelian Lie algebra.

If affine planes are not vanishing sets, then no non-trivial quotient of $A(D)$ is a Lie algebra.
Simple Lie algebras from 3-transposition groups

Theorem

Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $\mathcal{A}(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $\mathcal{A}(D)/\mathcal{V}$ is isomorphic to one of the following:

1. $^2A_n(2)$ if $G = 3^n : W(A_n)$ or $SU_{n+1}(2)$; for $n = 5$ also $P\Omega^-_6(3)$.
2. $^2D_n(2)$ if $G = 3^n : W(D_n)$ and n odd.
3. $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for $n = 4$ also $P\Omega^+_8(2) : Sym_3$.
4. $^2E_6(2)$ if $G = 3^6 : W(E_6)$ or $P\Omega_7(3)$ or Fi_{22}.
5. $E_7(2)$, $E_6(2)$ if $G = 3^n : W(E_n)$.
Theorem

Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $A(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $A(D)/\mathcal{V}$ is isomorphic to one of the following:

1. $^2A_n(2)$ if $G = 3^n : W(A_n)$ or $SU_{n+1}(2)$; for $n = 5$ also $P\Omega_6^{-}(3)$.
2. $^2D_n(2)$ if $G = 3^n : W(D_n)$ and n odd.
3. $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for $n = 4$ also $P\Omega_8^+(2) : Sym_3$.
4. $^2E_6(2)$ if $G = 3^6 : W(E_6)$ or $P\Omega_7(3)$ or Fi_{22}.
5. $E_7(2), E_8(2)$ if $G = 3^n : W(E_n)$.
Theorem

Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $A(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $A(D)/\mathcal{V}$ is isomorphic to one of the following:

1. $^2A_n(2)$ if $G = 3^n : W(A_n)$ or $SU_{n+1}(2)$; for $n = 5$ also $P\Omega^-_6(3)$.
2. $^2D_n(2)$ if $G = 3^n : W(D_n)$ and n odd.
3. $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for $n = 4$ also $P\Omega^+_8(2) : Sym_3$.
4. $^2E_6(2)$ if $G = 3^6 : W(E_6)$ or $P\Omega^+_7(3)$ or Fi_{22}.
5. $E_7(2)$, $E_8(2)$ if $G = 3^n : W(E_n)$.
Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $\mathcal{A}(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $\mathcal{A}(D)/\mathcal{V}$ is isomorphic to one of the following:

1. $^2A_n(2)$ if $G = 3^n : W(A_n)$ or $SU_{n+1}(2)$; for $n = 5$ also $P\Omega_6^-(3)$.
2. $^2D_n(2)$ if $G = 3^n : W(D_n)$ and n odd.
3. $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for $n = 4$ also $P\Omega_8^+(2) : Sym_3$.
4. $^2E_6(2)$ if $G = 3^6 : W(E_6)$ or $P\Omega_7(3)$ or Fi_{22}.
5. $E_7(2), E_8(2)$ if $G = 3^n : W(E_n)$.
Simple Lie algebras from 3-transposition groups

Theorem

Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $A(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $A(D)/\mathcal{V}$ is isomorphic to one of the following:

1. $^2A_n(2)$ if $G = 3^n : W(A_n)$ or $SU_{n+1}(2)$; for $n = 5$ also $P\Omega^-_6(3)$.
2. $^2D_n(2)$ if $G = 3^n : W(D_n)$ and n odd.
3. $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for $n = 4$ also $P\Omega^+_8(2) : Sym_3$.
4. $^2E_6(2)$ if $G = 3^6 : W(E_6)$ or $P\Omega_7(3)$ or Fi_{22}.
5. $E_7(2)$, $E_8(2)$ if $G = 3^n : W(E_n)$.
Simple Lie algebras from 3-transposition groups

Theorem

Let D be a class of 3-transpositions generating a finite group G satisfying a certain irreducibility condition. Suppose $A(D)/\mathcal{V}$ is a simple Lie algebra over \mathbb{F}_2 of dimension at least 2.

Then $A(D)/\mathcal{V}$ is isomorphic to one of the following:

1. $^2A_n(2)$ if $G = 3^n : W(A_n)$ or $SU_{n+1}(2)$; for $n = 5$ also $P\Omega_6^{-}(3)$.
2. $^2D_n(2)$ if $G = 3^n : W(D_n)$ and n odd.
3. $D_n(2)$ if $G = 3^n : W(D_n)$ and n even; for $n = 4$ also $P\Omega_8^{+}(2) : \text{Sym}_3$.
4. $^2E_6(2)$ if $G = 3^6 : W(E_6)$ or $P\Omega_7(3)$ or Fi_{22}.
5. $E_7(2), E_8(2)$ if $G = 3^n : W(E_n)$.

Vanishing sets

Lie algebras

Some computations
Overview

1. 3-transposition groups and Fischer spaces
2. Algebras from Fischer spaces
3. Vanishing sets
4. Lie algebras
5. Some computations
Unitary groups

L_{max} denotes the maximal Lie algebra quotient of $\mathcal{A}(D)$.

| G | $|D|$ | dim L_{max} | dim $\mathcal{A}(D)/\mathcal{V}$ |
|-------|--------|-----------------------|----------------------------------|
| $U_2(2)$ | 3 | 3 | 2 |
| $U_3(2)$ | 9 | 8 | 8 |
| $U_4(2)$ | 45 | 30 | 14 |
| $U_5(2)$ | 165 | 45 | 24 |
| $U_6(2)$ | 693 | 78 | 34 |
| $U_7(2)$ | 2709 | 119 | 48 |
| $U_8(2)$ | 10789 | 176 | 62 |
| $U_9(2)$ | 43356 | 249 | 80 |
| $U_{10}(2)$ | 174933 | 340 | 98 |
| $U_{11}(2)$ | ? | ? | 120 |

$U_n(2) = \frac{1}{6}(4^n + (-2)^n - 2)$

In fact, $\mathcal{A}(D)/\mathcal{V} \cong ^2A_n(2)$ holds.
Sporadic cases

L_{max} denotes the maximal Lie algebra quotient of $A(D)$.

| G | $|D|$ | $\text{dim } L_{\text{max}}$ | $\text{dim } A(D)/\mathcal{V}$ |
|-------------------|------|-------------------------------|-------------------------------|
| $O^+(8, 2) : \text{Sym}_3$ | 360 | 52 | 26 |
| $O^+(8, 3) : \text{Sym}_3$ | 3240 | 0 | 782 |
| Fi_{22} | 3510 | 78 | 78 |
| Fi_{23} | 31671| 0 | 782 |
| Fi_{24} | 306936| 0 | 3774 |

For $O^+(8, 2) : \text{Sym}_3$ we get the simple Lie algebra $D_4(2)$ and for Fi_{22} the simple Lie algebra $^2E_6(2)$.

In the other cases, we do not get Lie algebras, but still a non-trivial algebra structure.
Thank you!