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3-transposition groups

A class of 3-transpositions in a group G is a conjugacy class D
of G such that

1 the elements of D are involutions and

2 for all d , e ∈ D the order of de is equal to 1, 2 or 3.

G is called 3-transposition group if G = 〈D〉.

Examples

Transpositions in G = Sym(n); D = (12)G

Transvections in G = U(n, 2); D = dG where

d =

 0 0 ... 0 1
0 1 ... 0 0
...

. . .
...

0 0 ... 1 0
1 0 ... 0 0

 (in GAP’s version of this group)

Fi22, Fi23, Fi24 (note: the simple group is Fi′24)
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Classification of 3-transpositions groups

Fischer (around 1970) classified finite 3-transposition
groups with no non-trivial normal solvable subgroups.
 classification of finite simple groups

Cuypers and Hall (90s) classified all (possibly infinite)
3-transposition groups with trivial center, using geometric
methods (Fischer spaces).

Cuypers and Hall: If center is non-trivial, then G/Z (G ) is
3-transposition group with trivial center.
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Fischer spaces

Throughout the rest of this talk, let D be a class of
3-transpositions generating a 3-transposition group G , and
Z (G ) = 1.

o(de) = 3 ⇐⇒ de 6= ed ⇐⇒ d 6= de = ed 6= e

The Fischer space Π(D) is the partial linear space with D
as point set, and the triples {d , e, de} as lines (when
o(de) = 3).
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Characterizing Fischer spaces

Proposition (Buekenhout)

A partial linear space is a Fischer space if and only if every pair
of intersecting lines generates a subspace isomorphic to the
dual of an affine plane of order 2, or an affine plane of order 3.

(F2
2)dual  F2

3  
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Algebras from Fischer spaces

Denote by F2D the F2 vector space with basis D.

Vectors are finite subsets of D; sum of two sets is their
symmetric difference.

Define the 3-transposition algebra A(D) with underlying
vector space F2D; multiplication is linear expansion of
multiplication defined on d , e ∈ D by

d ∗ e :=

{
d + e + ed = {d , e, ed} if o(de) = 3

0 otherwise.

A(D) is a non-associative commutative algebra.
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Group action on A(D)

G acts on A(D) by conjugation:
(d1 + . . .+ dn)g = dg

1 + . . .+ dg
n .

Let V be a subset of A(D). Then I (V ) denotes the ideal
of A(D) generated by V .

Goal: Compute Lie algebra quotients with a G -action.

G = 〈D〉, so I (V ) is G -invariant if and only if for all
d ∈ D, X ∈ I (V ) we have X d ∈ I (V ).
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Vanishing sets

For d ∈ D set Ad := d⊥ \ {d} = {e ∈ D | de 6= ed}.

Lemma

Let X be a finite subset of D and d ∈ D. Then

d ∗ X = X + X d + (|Ad ∩ X | mod 2)d .

X is called vanishing set if |Ad ∩ X | is even for all d ∈ D.

Examples: Empty set; point sets of finite maximal linear
subspaces of Π(D) (they have odd size); . . .

Vanishing ideals are ideals generated by vanishing sets.

Any vanishing ideal I is G -invariant: If X ∈ I then
d ∗ X ∈ I hence {X d | d ∈ D} ∈ I .
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The maximal vanishing ideal

Let V be the ideal of A generated by all vanishing subsets of D.

Lemma

1 V equals the linear span of all vanishing subsets of D.

2 V is a proper ideal.

Idea of proof:

1 Follows from the fact that V is G -invariant.

2 Define a symplectic form 〈·|·〉 on A(D): Set 〈d |e〉 = 1 if
de 6= ed and 0 otherwise; extend linearly. This form is
non-zero if there are lines (i.e. if G is non-abelian).

If X is a vanishing set, then 〈d |X 〉 = 0. So V is in the
radical of 〈·|·〉 and hence a proper subspace of A(D).
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Proper G -invariant ideals are vanishing

Lemma

Any G -invariant proper ideal of A(D) is contained in V.

Proof:
Assume a G -invariant ideal I containing a non-vanishing set X .
There is d ∈ D such that d ∗ X = d + X + X d ∈ I . But I is
G -invariant, thus X d ∈ I and so d ∈ I and dG = D ⊆ I = A.

Proposition

Suppose Q is a simple quotient algebra of A(D). If G induces
a group of automorphisms on Q, then Q is isomorphic to
A(D)/V.
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Lie algebras from Fischer spaces

When is (a quotient of) A(D) a Lie algebra?

Lemma

Let I be an ideal of A(D). Then A(D)/I is
a Lie algebra, if and only if every affine
plane π of Π(D) is in I .

If there are no affine planes, then A(D) is a Lie algebra and
A(D)/V is an abelian Lie algebra.

If affine planes are not vanishing sets, then no non-trivial
quotient of A(D) is a Lie algebra.
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Simple Lie algebras from 3-transposition groups

Theorem

Let D be a class of 3-transpositions generating a finite group G
satisfying a certain irreducibility condition. Suppose A(D)/V is
a simple Lie algebra over F2 of dimension at least 2.

Then A(D)/V is isomorphic to one of the following:

1 2An(2) if G = 3n : W (An) or SUn+1(2); for n = 5 also
PΩ−6 (3).

2 2Dn(2) if G = 3n : W (Dn) and n odd.

3 Dn(2) if G = 3n : W (Dn) and n even; for n = 4 also
PΩ+

8 (2) : Sym3.

4 2E6(2) if G = 36 : W (E6) or PΩ7(3) or Fi22.

5 E7(2), E8(2) if G = 3n : W (En).
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5 E7(2), E8(2) if G = 3n : W (En).
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Unitary groups

Lmax denotes the maximal Lie algebra quotient of A(D).

G |D| dim Lmax dimA(D)/V

U2(2) 3 3 2
U3(2) 9 8 8
U4(2) 45 30 14
U5(2) 165 45 24
U6(2) 693 78 34
U7(2) 2709 119 48
U8(2) 10789 176 62
U9(2) 43356 249 80
U10(2) 174933 340 98
U11(2) ? ? 120

Un(2) 1
6(4n + (−2)n − 2) ??? n2 − 2 + (n mod 2)

In fact, A(D)/V ∼= 2An(2) holds.
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Sporadic cases

Lmax denotes the maximal Lie algebra quotient of A(D).

G |D| dim Lmax dimA(D)/V

O+(8, 2) : Sym3 360 52 26
O+(8, 3) : Sym3 3240 0 782

Fi22 3510 78 78
Fi23 31671 0 782
Fi24 306936 0 3774

For O+(8, 2) : Sym3 we get the simple Lie algebra D4(2) and
for Fi22 the simple Lie algebra 2E6(2).

In the other cases, we do not get Lie algebras, but still a
non-trivial algebra structure.
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Thank you!
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