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Abstract We investigate the state of the art in the computational determination
and enumeration of the groups of small order. This includes a survey of the avail-
able algorithms and a discussion of their recent improvements. We then show how
these algorithms can be used to determine or enumerate the groups of order at most
20 000 with few exceptions and we discuss the orders in this range which remain as
challenging open problems.

1 Introduction

The determination of the groups of a given order n up to isomorphism is one of
the central problems in finite group theory. The aim is to determine a list Ln of
groups of order n so that every group of order n is isomorphic to exactly one group
in the list Ln. A slightly weaker but also interesting goal is to enumerate the iso-
morphism types of groups of a given order. The aim is to determine the cardinality
|Ln|, possibly without explicitly listing all groups in Ln. There are asymptotic es-
timates known for |Ln|, see Pyber [23] for a survey, but no closed formula for |Ln|
is known. See also [11] for a discussion of properties of |Ln| as a function in n.

The history of this group construction or enumeration problem goes back to the
beginnings of abstract group theory: Cayley [10] introduced the abstract definition
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of groups and determined the groups of order at most 6. Many other group con-
structions and enumerations followed the work of Cayley. We refer to Besche, Eick
& O’Brien [7] for a history of group constructions and to Blackburn, Neumann &
Venkataraman [8] for details on enumerations of groups.

Senior & Lunn [25, 26] determined all groups of order at most 200 except 128 and
192. It is quite remarkable that they did this by hand and got it right! A natural
question is: why did they omit 128 and 192? Nowadays it is known that these two
orders yield by far the most groups in the range of orders at most 200: using the
SmallGroups library [5] one observes that there are 2 328 groups of order 128 and
1 543 of order 192, while the maximum is 267 for every other order at most 200.
There are 6 065 groups of order at most 200 in total.

Why are there many groups for some orders and very few for others? For example,
the SmallGroups library [5] asserts that there are 49 487 365 422 groups of order
1 024 and only 4 groups of order 1 025. The asymptotic results on |Ln| as reported
in [23] as well as the known values for |Ln| in the SmallGroups library suggest
that the largest multiplicity of a prime dividing an order n plays a major role; that
is, if n = pe1

1 · · · per
r for different primes p1, . . . , pr, then e = max{e1, . . . ,er} has a

major impact on the number of groups of order n. Note that 1 024 = 210, while
1 025 = 52 ·41.

Besche, Eick & O’Brien [6, 7] determined the groups of order at most 2 000 except
1 024 and Eick & O’Brien [15] enumerated the groups of order 1 024. The results are
available in the SmallGroups library [5]. This group determination and enumeration
was obtained with the massive help of computers and methods from computational
group theory. The use of computers is essential due to the large numbers of groups.
For example, there are eight orders in the range of orders at most 2 000 with more
than 100 000 groups.

Since then, computer technology and also the methods from computational group
theory have improved significantly. For example, a new isomorphism test and au-
tomorphism group algorithm has been developed by Cannon & Holt [9] and a new
method to construct finite solvable groups has been introduced by Eick & Horn [12].
Further, many of the methods in the computer algebra system GAP [29] have been
improved; in particular, the machinery to construct subdirect products has been sig-
nificantly updated by the third author. The combination of these advances permits
us to extend significantly the range of orders n for which Ln or at least |Ln| is
computable.

It is the aim of this paper to report on the available group construction and enu-
meration methods in GAP [29] and its packages and their application to the deter-
mination or enumeration of groups of order at most 20 000. There are currently 39
orders in the range at most 20 000 for which the number of groups of these or-
ders are unknown. We list these orders and discuss the difficulty that they impose
on the group construction and enumeration methods. Thus we highlight the most
challenging problems in the enumeration of finite groups of small orders.
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The known numbers of groups |Ln| for 1 ≤ n ≤ 20 000 can be obtained at a web-
page prepared by the second author:

http://groups.quendi.de.

Among these orders with known numbers, there are 56 orders with more than one
million groups. For example, each of the orders of the form 29 · p with p a prime
yields more than 400 million groups. And the order 210 yields more than one billion
groups.

Acknowlegdement. We thank Eamonn O’Brien for comments on drafts of this
work. The second author was supported by the DFG Schwerpunkt SPP 1489. The
third author was supported by Simons Foundation Collaboration Grant 244502.

2 Algorithms to construct finite groups

In this section we give a brief overview of the available methods to construct fi-
nite groups. These methods fall into three different categories: methods to construct
nilpotent groups, methods to construct solvable (non-nilpotent) groups and methods
to construct non-solvable groups.

2.1 Construction of nilpotent groups

A finite nilpotent group is a direct product of its Sylow subgroups. Hence the con-
struction of nilpotent groups directly translates to the construction of p-groups. For
this purpose there is a well-established method available: the p-group generation
method of O’Brien [21]. The basic approach of this method is to use induction along
the lower exponent-p central series. An implementation of this method is available
in the GAP package [19].

2.2 Construction of solvable (non-nilpotent) groups

The Frattini extension method.

The Frattini extension method by Besche & Eick [2] is a widely used method for
the construction of finite solvable groups. Recall that the Frattini subgroup Φ(G)
of a finite group G is the intersection of all maximal subgroups of G. The basic
approach of this method is to determine up to isomorphism a list of candidates
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for the Frattini factors of the groups of order n and then, for each candidate F ,
determine up to isomorphism all groups G of order n with G/Φ(G) ∼= F . The first
step of this approach is usually comparatively fast and yields a comparatively short
list of groups. It relies heavily on an effective determination of subdirect products.
The second step is often more involved and requires the reduction of a given list of
groups to isomorphism type representatives. A first reduction can often be achieved
by using the highly effective random isomorphism test of [2]. A final reduction is
then obtained by general isomorphism testing methods such as those described in [9,
27]. The Frattini extension method allows us readily to restrict to the construction of
non-nilpotent groups or those with certain normal or non-normal Sylow subgroups.
An implementation of this method is available in the GAP package [3].

Solvable group construction.

Eick & Horn [12] present an alternative method to construct the solvable groups of
a given order. This is a direct generalisation of the p-group generation method. It
is often slower than the Frattini extension method, but in some cases it was able to
determine the groups of a given order where the Frattini extension method failed.
Further, it is very useful in verifying the results of the Frattini extension method.
Also this method restricts readily to construct non-nilpotent groups only. An im-
plementation of this method in GAP exists and will be made available as a GAP
package [17].

2.3 Construction of non-solvable groups

The cyclic extensions method.

Besche & Eick [2] outlined a rather crude approach towards constructing non-
solvable groups. It starts from the library of perfect groups [16]; we refer to the
work by Holt & Plesken [16] for this. It then iteratively constructs cyclic extensions
of groups. The extensions obtained then must be reduced to isomorphism types.
This requires an effective isomorphism test for non-solvable groups. Nowadays we
use the method by Cannon & Holt [9] for this purpose whose implementation in
GAP will be made available as part of GAP 4.9.

Archer’s methods: supplements and Zφ .

Archer [1] described two effective methods to construct the non-solvable groups
of a given order n. Both approaches require that the perfect groups of all orders m
dividing n are determined up to isomorphism; see [16].

The supplement method additionally requires that the solvable groups of order n/m
are classified. For a given perfect group H of order m and a given solvable group
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G of order n/m, it determines up to isomorphism all groups E having a normal
subgroup M�E with M ∼= H and E/M ∼= G.

The Zφ method additionally requires that all solvable groups of the orders kn/m
are known, where k ranges over the sizes of the centers of the perfect groups of
order m. For a given perfect group H of order m with center Z = Z(H) of order
k, it considers all solvable groups G of order kn/m extending Z and it determines
up to isomorphism all groups E having a normal subgroup M � E with M ∼= H
and E/M ∼= G/Z. Note that the Zφ method does not apply in all cases on H; we
refer to [1, Page 75] for details. Note also that [1, Section 5.1] contains a limited
version of the Zφ method. This applies only if |Z(H)| ≤ 2 and, if |Z(H)|= 2, then if
gcd(|Out(H)|, |G|)≤ 2. While this is a significant restriction, it still applies to many
of the cases that we need to consider.

Archer neither published the results of his enumeration, nor his implementations of
the algorithms. We have implemented in GAP the limited version of the Zφ method.
This does not apply to all cases, but it allows readily to be combined with the cyclic
extension method. We are using this combination as an alternative approach to con-
struct non-solvable groups. If the limited Zφ method applies, then it is usually more
effective than the cyclic extension method. Our implementation of the limited Zφ

method will be made available as a package for GAP.

As part of the applications of our implementation, we recomputed and extended the
table on page 64 in [1]. We noted that the rows for |S| ∈ {128,256} in this table
were incorrect. The correct values, as well as the additional value for |S|= 384, are
as follows:

|S| grps OK OZ OZ,K

128 2 328 16 996 8 308 72 010
256 56 092 1 027 380 337 956 6 856 498
384 20 169 206 463 82 035 938 587

3 A symbolic enumeration algorithm

Suppose that m∈N is given and that the groups of order m are available; that is, Lm
is known. In this section we describe an effective algorithm to enumerate the groups
of order m · p for all primes p coprime to m. Our approach is based on a theorem by
Taunt [28] and it extends the cyclic split extension method described in [2] and the
ideas in [4].

For a group G of order m and l | m let Ol denote a set of representatives of the
Aut(G)-classes of normal subgroups K in G with G/K cyclic of order l. For K ∈Ol
let AutK(G) denote the stabilizer of K in Aut(G), let AutK(G) be the subgroup



6 Bettina Eick, Max Horn and Alexander Hulpke

of Aut(G/K) induced by the natural action of AutK(G) on G/K and let indK :=
[Aut(G/K) : AutK(G)].

Let (d1, . . . ,dk) be the list of all divisors of m, with d1 = 1. We set

w(G) := (wd1(G), . . . ,wdk(G)), where wdi(G) := ∑
K∈Odi

indK

and we denote

w(m) := (wd1(m), . . . ,wdk(m)), where wdi(m) := ∑
G∈Lm

wdi(G).

Theorem 1. Let m ∈ N and π the set of those prime divisors of (d2−1) · · ·(dk−1)
that do not divide m.

a) Let p be a prime with p - m. If there exists a group of order mp without normal
Sylow p-subgroup, then p ∈ π .

b) Let p be a prime with p - m. The number of isomorphism types of groups of order
m · p having a normal Sylow p-subgroup is

∑
i∈{1,...,k}

with di|(p−1)

wdi(m).

Proof. a) By Sylow’s theorems the number of Sylow p-subgroups in a group of or-
der mp is congruent to 1 modulo p and it divides m. Thus if there exists a group of
order mp without normal Sylow p-subgroup, then p | (di−1) for some i∈{2, . . . ,k}.
b) Suppose that H is group of order mp with normal Sylow p-subgroup. By the
Schur-Zassenhaus theorem, H ∼= Cp oϕ G for a group G of order m and some ho-
momorphism ϕ : G→ Aut(Cp)∼=Cp−1. Taunt [28] proved that two split extensions
Cp oϕ1 G and Cp oϕ2 G are isomorphic if and only if there exist α ∈ Aut(G) and
β ∈Aut(Cp) so that ϕ1(α(g)) = β−1ϕ2(g)β in Aut(Cp) for each g∈G. As Aut(Cp)
is abelian, this reduces to ϕ1(α(g)) = ϕ2(g) for all g ∈ G and thus is independent
of β . Based on this, one can readily observe that the different isomorphism types of
split extensions Cp oϕ G with K = ker(ϕ) correspond one-to-one to the elements of
a transversal of AutK(G) in Aut(G/K) and this yields the desired result.

Theorem 1 translates to an effective method to enumerate the groups of order mp
for fixed m and arbitrary prime p - m:

1) Let D = (d1, . . . ,dk) be the list of divisors of m, with d1 = 1.

2) For all groups G in Lm determine w(G) with respect to D.

3) Using the values in (2), determine wd1(m), . . . ,wdk(m).

4) Determine the (finite) set π of those prime divisors of (d2−1) · · ·(dk−1) that do
not divide m.
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5) For each p ∈ π determine the number ap of groups of order mp without normal
Sylow p-subgroups (for example, using the Frattini extension method and the
construction of non-solvable groups).

6) Define ap = 0 if p 6∈ π .

7) Given an arbitrary prime p with p - m, it now follows that

|Lmp|= ap + ∑
i∈{1,...,k}

with di|(p−1)

wdi(m).

Note that this method can be adapted readily to count solvable and non-solvable
groups separately and we use this frequently in applications.

4 Recent improvements to implementations in GAP

Many of the above algorithms rely on effective methods to determine automorphism
groups and to decide isomorphism. Here we exhibit various improvements to the
existing methods for these purposes. We discuss automorphisms and isomorphisms
in the following two subsections and we note that all exhibited improvements will
be made public with GAP 4.9.

4.1 Automorphism groups

There are various methods known to determine automorphism groups. For finite p-
groups we use the method by Eick, Leedham-Green & O’Brien [13] as implemented
in the GAP package [14], for finite solvable groups we use the method by Smith [27],
and for finite non-solvable groups we use the method by Cannon & Holt [9]. Smith’s
method is implemented in the GAP library. This implementation has recently been
improved by the third author and it has been combined with an implementation of
the method by Cannon & Holt [9].

In the remainder of this subsection, we discuss the recent improvements to the GAP
implementation of Smith’s method. Let G be a finite solvable group. Smith’s method
uses induction along a characteristic series of G with elementary abelian factors. Let
M by a characteristic elementary abelian subgroup of G of order pd , say. Then there
is a natural homomorphism

ϕ : Aut(G)→ Aut(G/M)×Aut(M).
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By induction, we assume that Aut(G/M) is given. Note that Aut(M) ∼= GL(d, p).
The principal idea of Smith’s method is to determine Aut(G) via determining the
kernel and image of ϕ . The kernel of ϕ is naturally isomorphic to Z1(G/M,M) and
can be determined readily. The image of ϕ can be described by certain stabilizer
calculations; these stabilizer calculations are the main bottlenecks of the method.

One idea towards reducing the bottlenecks is the following. Instead of starting a
stabilizer computation with the full direct product Aut(G/M)×Aut(M), we deter-
mine a priori a subgroup D ≤ Aut(G/M)×Aut(M) with im(ϕ) ≤ D and then use
D instead of Aut(G/M)×Aut(M). For example, a subgroup D can be determined
as the stabilizer of each group in a collection of characteristic subgroups of G. This
often breaks a single stabilizer calculation into a sequence of smaller calculations
and thus reduces the bottleneck of the overall method.

Using characteristic subgroups is particularly helpful to reduce Aut(M). In this case
the stabilizer of each group in a collection of characteristic subgroups of M in
Aut(M) translates to the stabilizer of a collection of invariant subspaces of Fd

p in
GL(d, p). This can be determined readily via the method described by Schwingel
[24]. We implemented this in GAP and use it in combination with Smith’s method.

We exhibit a second idea towards reducing bottlenecks. Let D ≤ Aut(G/M)×
Aut(M) with im(ϕ) ≤ D. Then D acts naturally on the set of homomorphism
G/M → M. Let σ denote the homomorphism arising from the conjugation action
of G/M on M. One step in Smith’s method is to determine the stabilizer in D of σ .
We first determine a permutation representation of D related to the action on homo-
morphisms and then use the highly effective permutation group machinery of GAP
to determine the desired stabilizer.

4.2 Isomorphisms

In this section we discuss the GAP implementation of the method of Cannon & Holt
[9] to decide if two finite groups G and H are isomorphic. We first determine various
invariants of G and H to have a fast initial check for non-isomorphism.

The method of Cannon & Holt uses induction along a fully invariant series through
G and H. In each induction step it decides isomorphism and computes the automor-
phism group of the considered quotient.

Two groups G and H are isomorphic if and only if there exists α ∈Aut(G×H) with
Gα = H. This translates an isomorphism test to an automorphism group calculation.
Note that it is not necessary for this approach to determine the full automorphism
group of G×H: if G and H are isomorphic, then Aut(G×H) contains a subgroup
W ∼= Aut(G) oC2 and G and H are conjugate in W .
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Further, with this method it is frequently useful to determine a collection of fully
invariant subgroups of G and H a priori and to use these subgroups to reduce the
calculation, since a fully invariant subgroup of G (such as, for example, G′, Fit(G)
or Z(G)) has to map onto the corresponding subgroup of H and thus our aim is to
determine α ∈W that maps these pairs of subgroups onto each other.

5 The groups of order at most 20 000

In this section we describe how we enumerated or constructed the groups of order
at most 20 000 with few exceptions.

Nilpotent groups: We have constructed these as direct products of p-groups. The
groups of order dividing p7 have been determined by Newman, O’Brien & Vaughan-
Lee [18, 22]. The groups of order dividing 29 have been constructed by Eick &
O’Brien [15, 20] who also enumerated the groups of order 210. The groups of order
38 have been determined by Vaughan-Lee [30]. Hence the nilpotent groups of order
n are available for all n ∈ {1, . . . ,20 000} except for those n divisible by 210 or 39;
and the nilpotent groups of order divisible by 210, but not divisible by 211, can be
enumerated.

Solvable, non-nilpotent groups: We have used the Frattini extension method or
the solvable group construction to determine these groups. The Frattini extension
method in combination with an improved isomorphism test for solvable groups has
been used for the vast majority of orders in the range up to 20 000. The only ex-
ception are the groups of order 28 · 32 = 2 304 which were constructed with the
solvable group construction method. Further, we used the method of Section 3 to
enumerate groups of certain orders. Among the orders n in the range at most 20 000
there are 19 733 orders of the form m · p with p a prime that does not divide m. We
applied the method of Section 3 to a significant range of these orders. In particular,
we enumerated the groups of order 29 · p for p an odd prime with this approach.

Non-solvable groups: We have used the combination of the cyclic extension
method with the limited version of Archer’s Zφ method to construct these groups.
We note that there are 448 orders in the range of orders at most 20 000 for which
non-solvable groups exist. For example, we determined 99 926 non-solvable groups
of order 7 680 = 29 · 3 · 5, and counted that there are more than 8 279 000 non-
solvable groups of order 15 360 = 210 ·3 ·5.
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6 Open cases and challenges

We first discuss enumerations of groups before we consider explicit constructions.

6.1 Enumeration

There are 39 orders in the range at most 20 000 for which we have not (yet?) enumer-
ated the groups of these orders. Note that in all but one case, order 15 360= 211 ·3 ·5,
the non-solvable groups have been enumerated successfully. Thus, the following
discussion is primarily concerned with solvable groups.

First case. Let E1 = {n∈ {1, . . . ,20 000} | 210 | n or 39 | n}. Then E1 contains 20 or-
ders. For these 20, the nilpotent groups of each order are not explicitly constructed,
let alone the non-nilpotent groups. Using the methods in [15], one can determine
that there are 4 896 600 938 groups of order 39 and exponent-3 class 2. Further,
it is known that there are 49 487 365 422 groups of order 210. These numbers of
groups are so large, that the enumeration of groups of orders in E1 appears to be
infeasible. Just to give an idea of the problems that will arise in trying to address
this case, we note that the methods of [15] can be used to determine that there are
1 774 274 116 992 170 groups of order 211 and exponent-2 class 2. These methods
are available as part of the GAP package [14].

Second case. Let E2 the set of those n ∈ {1, . . . ,20 000} satisfying that 29 · p is a
proper divisor of n for some p ∈ {3,5,7}. There are 18 orders in E2. There are over
400 000 000 groups for each of the orders 29 · p with p ∈ {3,5,7}. Hence, again,
these numbers are so large, that the enumeration of groups of orders in E2 appears
to be infeasible.

Third case. Let E3 = {n ∈ {1, . . . ,20 000} | (28 · p2) | n for some p ∈ {3,5,7}}.
There are 12 orders in E3. These orders are difficult cases for the construction
of solvable groups via the Frattini extension method. We have determined the
15 756 130 groups of order 28 ·32 using the solvable group construction. This order
is an exception in the set E3.

Exceptional cases. Six orders remain which are not in E1 ∪E2 ∪E3 and the con-
struction of the groups of these orders is an open problem. We list these orders in
the following table. The nilpotent groups of each of these orders are determined.
Where known, we exhibit in the table the numbers of nilpotent, solvable and non-
solvable groups.
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n # nilpotent # solvable # non-solvable
8 748 = 22 ·37 18 620 not known 0

10 368 = 27 ·34 34 920 not known 0
13 122 = 2 ·38 1 396 077 not known 0
16 000 = 27 ·53 11 640 not known 0
17 496 = 23 ·37 46 550 not known 0
18 816 = 27 ·3 ·72 4 656 not known 387

6.2 Construction

As observed in the previous paragraph, for all but 39 orders at most 20 000 we
have enumerated the numbers of groups of these orders. For the vast majority of
these orders we have also determined isomorphism type representatives explicitly:
more precisely, there are 34 orders for which we have enumerated the corresponding
groups only, but did not construct them. This includes the order 210 for which the
groups have been enumerated using the methods in [15].

For another 32 of these orders, we have used the approach exhibited in Section 3 to
enumerate the groups of these orders. These orders are of the form 29 p for p an odd
prime, of the form 28 pq for p ∈ {3,5,7} and q a prime different from 2 and p, of
the form 2732 p for p a prime different from 2 and 3, and the orders

8 640 = 26 ·33 ·5, 9 600 = 27 ·3 ·52, 13 440 = 27 ·3 ·5 ·7,
16 320 = 26 ·3 ·5 ·17, 17 280 = 27 ·33 ·5, 19 440 = 24 ·35 ·5.

Finally, we counted the groups of order 12 500 = 22 ·55 using a modified version of
the method described in Section 3, by exploiting that these groups always admit a
normal Sylow 5-subgroup.

For all other 19 927 orders in the range of orders at most 20 000, we have explicitly
determined the groups of the corresponding orders, unless they are already available
in the SmallGroups library [5]. The resulting groups will be made available as a
package for GAP.

7 Reliability of the data

It is important to cross-check the computed data for group constructions and enu-
merations. One very useful way for doing this is to determine or enumerate the
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groups of a certain order in two different ways. We have done this in many cases. In
all of them the results of the different methods agree with each other.

We computed non-solvable groups using both the cyclic extension method and the
limited version of Archer’s Zφ method whenever Archer’s method applies. Addi-
tionally, we used the method of Section 3 to obtain an independent enumeration of
the groups whenever the order is of the type mp with p prime and m coprime to p
and we used different types of such factorisations of the order when possible. Out
of the 447 orders admitting non-solvable groups, we enumerated 441 with at least
two different methods. This leaves only six cases which were not cross-checked.

For the solvable groups, we employed two methods: the Frattini extension method,
as well as the enumeration approach from Section 3. In the range of order at most
20 000, the SmallGroups library [5] already covers 17 903 orders. Of the remaining
2 097 orders, we enumerated 1 875 orders with both methods, 183 orders with only
one method, and 39 orders remain open, see Section 6.
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