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1. Introduction

In 1977 Kok-Wee Phan [20] published a theorem on the generation of the special unitary
group SU(n+ 1, q2) by a system of subgroups isomorphic to SU(3, q2). Phan’s theorem
is used as an identification tool in the classification of finite simple groups (see [1]).

The revision of this classification by Gorenstein, Lyons and Solomon called for a revi-
sion of Phan’s results as well. This motivated Bennett and Shpectorov [4] to provide a
new proof of Phan’s theorem. Their approach is based on the realization that Phan’s con-
figuration arises as the amalgam1 of stripped2 rank two parabolics in the flag-transitive
action of SU(n + 1, q2) on the geometry of nondegenerate subspaces of the underlying
unitary space. To prove the theorem, one essentially needs to classify related amalgams,
and then has to study the universal completion of these amalgams.

The approach used to deal with the universal completion shows the beauty of applying
geometry to this problem: Thanks to Tits’ Lemma the result can be established by prov-
ing that the geometries involved are simply connected, which amounts to analyzing their
simplicial complexes. Hence the original group theoretic problem has been transformed
into a geometric problem.

The work described above deals with the group SU(n+1, q2). However, the techniques
employed in the new proof of Phan’s theorem can be extended to other classical groups.
In particular, a Phan-type theorem for the group Sp(2n, q) was presented and proved in
[13] and [15].

That theorem requires n ≥ 5 and q arbitrary, or n = 4 and q ≥ 3, or n = 3
and q ≥ 8. For (n, q) = (3, 2), there exists a counterexample, which shows that the
theorem is false in that case. So far it was not clear whether the other exceptions
in the above list were true exceptions, or simply were due to shortcomings of the
proof. Specifically, the proof relies on point counting arguments, and the open cases
(n, q) ∈ {(3, 3), (3, 4), (3, 5), (3, 7), (4, 2)} were “too small” to be tractable by those tech-
niques. In this thesis, we show that the theorem extends to these parameters. The
improved theorem can be found in Section 3.1.

Structure

The structure of this work is as follows: In Chapter 2, we provide some of the standard
definitions and terminology used throughout the thesis. The reader already familiar with

1The reader not familiar with the notations and terminology employed in this introduction may want
to read Chapter 2 first.

2stripped in the sense that the torus of SU(n + 1, q2) has been factored out. See Section 6.4.
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them can skip over that chapter, maybe with the exception of Section 2.3, in which we
describe the specific geometrical setting.

In Chapter 3 we present the main result proved in this thesis.
In Chapter 4 we analyze the universal completion of the amalgam of maximal parabol-

ics, for all open cases, and prove part of our main result.
In Chapter 5, we refine the geometric approach from [15] such that it also covers the

case (n, q) = (3, 7) (yielding another proof of this case), and also correct some small
errors in the original paper. We also complete the proof of our main result.

In Chapter 6 we use the results from the preceding chapters to give a generalized
version of the main theorems from [15].

In Appendix A we briefly review the case (n, q) = (3, 3) and compare it to some
previous results for related Phan-type theorems.

In Appendix B we give finite presentations for the groups from Chapter 4, which can
be used to verify the results stated there.

In Appendix C you will find the GAP [10] code used to arrive at the results in Chapter
4; in particular, it was used to find the presentations from Appendix B (the reason we
print these presentations, too, is that they are semi-randomly generated, and so they
differ on each run of the code).

Finally in Appendix D we list GAP code that is referred to in the proof of Lemma
5.3.3.
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2. Basics and Definitions

2.1. Amalgams

In this section, we introduce the notion of group amalgams. Note that we only need a
special kind of amalgams; for a more general definition, see for example [24].

Definition 2.1.1. An amalgam of groups is a set A endowed with a partial multi-
plication and a finite family of subsets (Gi)i∈I such that the following holds:

(1) A = ∪i∈IGi,

(2) the restriction of the multiplication to Gi turns Gi into a group for i ∈ I,

(3) Gi ∩Gj is a subgroup both in Gi and Gj for all i, j ∈ I.

Example 2.1.2. LetG be an arbitrary group. Let (Gi)i∈I be a finite family of subgroups
of G. Then A := ∪i∈IGi defines an amalgam of groups.

Definition 2.1.3. A group G is called a completion of an amalgam A if there exists
a map π : A → G (called the completion map) such that

(1) for all i ∈ I the restriction of π to Gi is a homomorphism

(2) π(A) generates G.

Example 2.1.4. Let G and A be as in Example 2.1.2. Then G together with the natural
map π : A → G (where π = idG|A) is a completion of A if and only if G is generated by
A, i.e. G = 〈A〉.

Example 2.1.5. The trivial group is always a completion of any amalgam. An amalgam
which only permits the trivial group as a completion is called collapsing.

Among all completions of A there is a largest one which, if A is finite, can be defined
as the group having the following finite presentation:

U(A) = 〈th | h ∈ A, txty = txy if xy is defined 〉.

U(A) is called the universal completion. Its completion map is given by

ψ : A → U(A) : g 7→ tg.
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We call this completion universal since it has the universal property that for any other
completion G with completion map π, there exists a (unique) group epimorphism π̂ from
U(A) onto G such that the following diagram commutes:

A U(A)

G

.................................................................................................... ............
ψ

..............................................................................................................
...
.........
...

π̂

............................................................................................................................................................................ .........
...

π

We define the map π̂ by first defining it on the the generators ψ(A) of U(A) only, via
π̂|ψ(A) : tx 7→ x. This can be extended to a group epimorphism because

π̂(txty) = π̂(txy) = xy = π̂(tx)π̂(ty)

if xy (and thus txy) is defined, and otherwise define

π̂(txty) := xy = π̂(tx)π̂(ty).

We now consider the amalgam formed by subgroups of a given group G (see Example
2.1.2).

Lemma 2.1.6. Let (Gi)i∈I be a finite family of subgroups of a finite group G which
generates G, let A := ∪i∈IGi be the associated amalgam of groups, and let ψ : A → U(A)
be the completion map. Then for each i ∈ I the restriction ψ|Gi

: Gi → U(A) is injective.
Furthermore U(A) ∼= G if and only if any (and then all) of the Gi has the same index
in G as in U(A).

Proof. Note that G is a completion of A, for which the completion map ι is the inclusion
map. By the universal nature of U(A), there exists an epimorphism π from U(A) onto
G such that the following diagram commutes:

A U(A)

G

.................................................................................................... ............
ψ

..............................................................................................................
...
.........
...

π

............................................................................................................................................................................ .........
...

ι

Hence ψ|Gi
must be injective.

Let G̃i := ψ(Gi), the subgroup of U(A) corresponding uniquely to Gi via ψ. It follow
that if U(A) ∼= G, the index of the Gi and G̃i coincide, hence this direction of the claim
follows immediately.

On the other hand, assume that for some i, Gi has the same index in G as G̃i has in
U(A). G̃i intersects the kernel of π trivially, since by the above π(G̃i) = Gi ∼= G̃i. But
by hypothesis [U(A) : G̃1] = [G : G1], hence π is an isomorphism between U(A) and G.
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2.2. Geometries

In the following, we give a quick run-down on the basics of synthetic geometry. For a
more complete introduction to the subject, refer for example to [6] or [19].

Definition 2.2.1 (Pregeometry). A pregeometry over a set I is a triple G =
(X, ∗, typ) where X is a set (its elements are called the elements of G), ∗ is a symmetric
and reflexive relation defined on X which is called the incidence relation of G, and typ
is a map from X to I (the set I is called the type set of G) such that typ(x) = typ(y)
and x ∗ y imply x = y. The pregeometry G is called connected if the graph (X, ∗) is
connected.

Definition 2.2.2 (Rank, flag). If A ⊆ X, then A is of the type typ(A), of rank
|typ(A)|, and of corank |I \ typ(A)|. The cardinality |I| of I is called the rank of
G. A flag of G is a set of mutually incident elements of G. Flags of type I are called
chambers.

Definition 2.2.3 (Residue). If F is a flag of G, then the residue of F in G is the
pregeometry GF (XF , ∗F , typF ), where XF is the set of elements of X that are incident
with but distinct from all elements of F , and ∗F , typF are the restrictions of ∗ and typ
to XF × XF respectively XF . The pregeometry G is called residually connected if
(XF , ∗F ) is a connected graph for each flag F of G of corank greater or equal two, and
non-empty for each flag F of corank one.

Definition 2.2.4 (Geometry). A geometry over I is a pregeometry G over I in which
every maximal flag is a chamber.

Example 2.2.5. Let V be a vector space over R of finite dimension n, n ≥ 3. Denote
by P(V ) the geometry over I := {1, . . . , n − 1} consisting of the proper subspaces of
V with symmetrized containment as incidence and the dimension function as the type
function. The geometry P(V ) is called the (desarguesian) projective geometry of
V .

Definition 2.2.6. Let G be a group of automorphisms of a geometry G over I. We say
G acts flag-transitively on G if for each J ⊆ I, G acts transitively on the set of flags
of type J . In other words, if F1 and F2 are flags in G of equal type, then there exists
g ∈ G such that g(F1) = F2.

Definition 2.2.7. Let G be a geometry of rank n, let φ : G → AutG be a group
homomorphism such that φ(G) acts incidence-transitively on G. A rank k parabolic is
the stabilizer of a flag of corank k from G with respect to the action given by gF := φ(g)F .
Parabolics of rank n−1 are called maximal parabolics. They are exactly the stabilizers
in G of single elements of G.
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Definition 2.2.8. Let G be a geometry which admits points and lines as two if its types.
The collinearity graph is an undirected graph which has as its vertices the points of
G, and in which two vertices v1, v2 corresponding to points p1, p2 are connected by an
edge if and only if there exists a line l incident to both p1 and p2.

2.3. Geometrical setting

Let B2n be the matrix(
0 Idn×n

−Idn×n 0

)
over Fq2 . Let (·, ·) be the bilinear form defined by B2n via (x, y) := xTB2ny. We
represent G := Sp(2n, q2) by the set of all invertible (2n) × (2n)-matrices A over Fq2
which preserve (·, ·), that is, ATB2nA = B2n holds.

Let V be the vector space F2n
q2 and let {e1, . . . , en, f1, . . . , fn} be the standard basis. We

denote by¯the (unique, by Prop. V.12.4 in [5]) non-trivial involutory field automorphism
x 7→ xq of Fq2 . Consider the -̄semi-linear map σ : V → V defined by ei 7→ fi, fi 7→ −ei
and σ(c · v) = cσ(v) for c ∈ Fq2 , v ∈ V . Note that σ(v) = B2nv = B2nv. Then the
centralizer Gσ := {g ∈ G | ∀v ∈ V : gσ(v) = σ(gv)} of σ in Sp(2n, q2) is isomorphic to
Sp(2n, q) (see [15], Proposition 3.8). For our computations in the later sections, we take
Gσ as our representation of Sp(2n, q). Note that for a matrix A ∈ Sp(2n, q2), centralizing
σ is equivalent to the condition A−1 = A

T .
We now define the (so-called flip-flop) geometry Gherm

C which we are studying in this
thesis1. To this end, we define a -̄hermitian form ((·, ·)) by ((u, v)) := (u, σ(v)). To
denote orthogonality with respect to the form (·, ·), we use the symbol ⊥. To denote
orthogonality with respect to the form ((·, ·)), we use the symbol ⊥⊥.

The objects of the geometry are all non-trivial subspaces of V which are totally
isotropic with respect to (·, ·) and ((·, ·))-nondegenerate. The incidence relation is de-
fined by symmetrized containment. As Sp(2n, q) respects both forms, Sp(2n, q) acts on
the geometry. This action is in fact flag-transitive (see [15], Proposition 4.2). Note that
the name Gherm

C is inspired by the fact that the geometry is defined via a hermitian form
and corresponds to the Dynkin diagram Cn (see for example [6]).

For our computations we choose the maximal flag F

〈e1〉 ⊂ 〈e1, e2〉 ⊂ . . . ⊂ 〈e1, e2, . . . , en〉.

When computing stabilizers, we will refer to the stabilizers of each of these subspaces
as the point stabilizer M1, the line stabilizer M2, the plane stabilizer M3 and (for n = 4)
the space stabilizer M4, respectively. The Mi are the maximal parabolics of Gσ.

1For an introduction to flip-flop geometries, see [3] or [12].
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3. Results

3.1. Main result

By A(k) we denote the amalgam of rank k parabolics. Using the results from [15] and
the work done here we can prove the following theorem:

Theorem 3.1.1. Gσ is the universal completion of A(n−1) if and only if n ≥ 3 and
(n, q) 6= (3, 2).

Proof. See Section 5.6

Then using the above theorem, we can refine Theorems 1 and 2 from [15] (proof
identical to the one given there):

Theorem 3.1.2. The following hold.

(1) If n ≥ 3 and q ≥ 3 then Gσ is the universal completion of A(2).

(2) If n ≥ 4 then Gσ is the universal completion of A(3).

3.2. Consequences

The result from Section 3.1 can be used to strengthen the Phan-type theorems for Cn
as given in [11], [12], [13] and [15]. This was in fact the main motivation for the work
accomplished in this thesis.

We will give some required definitions, the resulting theorems as well as a sketch of
their proof, in Chapter 6.
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4. Determining universal completions

4.1. General approach for computing the amalgams: GAP

In order to compute the universal completion of the amalgams of parabolics which we are
studying here, we do the following: First, we determine generators for each parabolic.
They will be chosen such that the intersection of the parabolics is generated by the
intersection of their respective generating set. Specifically, in the case n = 3 the maximal
parabolics we consider are the point, line and plane stabilizers of our flag F , with suitably
chosen generators u, v, w. These stabilizers all intersect in the flag stabilizer, and so
generators of the flag stabilizer together with u, v, w generate the desired parabolics as
well as their intersections (which are also parabolics). In Figure 4.1 you can see the
subgroup structure they form.

Sp(6, q)

flag

w
v

u

plane line point

Figure 4.1.: Subgroup structure in Sp(6, q)

To prove that the parabolics and their intersections are generated by the matrices for
which we claim this, we first show that they generate a subgroup U of the desired group
H; then we compute a lower bound of the size for U . If this bound equals the size of
the full group H, we have thus established that H ∼= U .

We proceed by using GAP [10] to compute finite presentations of the parabolics in
terms of these generators: We first find a permutation group isomorphic to our group,
then from that determine the corresponding relators (to learn more about the algorithms
involved, which GAP implements, refer to [7] and [17]). Due to our choice of generators,
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the universal completion of the amalgam is obtained by forming the union of all the
generators and relators of the parabolics.

Finally, we have to prove that this universal completion is identical to Sp(2n, q). For
this it would be sufficient to compute the size of the group. Doing that directly via a
coset enumeration over the trivial group is not feasible due to the size of this finitely
presented group. Instead we compute the index of one of the parabolics inside the
amalgam, which also establishes the desired isomorphism (see Lemma 2.1.6).

Before we proceed with the details of this, we present some auxiliary results which are
useful for computing lower bounds on the group sizes.

4.2. Vectors with short orbit

In this section we will discuss certain vectors which have a comparatively short orbit
under the group action induced by Sp(2n, q). These are used in constructing permutation
representations of small degree, which in turn are used in computing lower bounds for
the size of certain subgroups of Sp(2n, q).

Let V and Gσ be as defined in Section 2.3.

Definition 4.2.1. For λ ∈ Fq2 , we define Vλ := {u ∈ V | σ(u) = λu}.

Lemma 4.2.2. The following hold.

(1) Vλ is Gσ-invariant.

(2) Vλ is an Fq-subspace of V.

(3) Vλ 6= 0 if and only if λλ̄ = −1

(4) If Vλ 6= 0 then Vλ contains a basis of V.

Proof. Take g ∈ Gσ. If u ∈ Vλ then

σ(g(u)) = g(σ(u)) = g(λu) = λg(u).

This proves statement (1). Suppose u ∈ Vλ. Then for µ ∈ Fq

σ(µu) = µ̄σ(u) = µσ(u) = µλu = λ(µu).

This proves (2). Also, −u = σ(σ(u)) = λ̄λu. Thus, if u 6= 0 then λλ̄ = −1. This proves
the ‘only if’ part of (3). To prove the ‘if’ part, choose a basis

e1, . . . , fn

for σ. Fix a λ ∈ Fq2 such that λλ̄ = −1. Define

ui := ei − λ̄fi and vi = λ̄ei + fi

12



for 1 ≤ i ≤ n.
Note that ui and vi are in Vλ since

σ(ui) = λei+ fi = λ(ei− λ̄fi) = λui and σ(vi) = −ei+λfi = λ(λ̄ei+ fi) = λvi.

This shows that Vλ 6= 0.
Furthermore, ui and vi are only proportional if λ̄ = λ, that is, λ ∈ Fq. Thus, if λ 6∈ Fq

then

{u1, . . . , un, v1, . . . , vn}

is a basis of V . If λ ∈ Fq then consider λ′ = µ̄
µλ, where µ is chosen so that µ̄

µ 6∈ Fq. By
(2), Vλ′ = µVλ. Also, since λ′ 6∈ Fq, we have that Vλ′ contains a basis of V , and hence
so does Vλ.

Let λ ∈ Fq2 such that λλ = −1. Since Vλ contains a basis for V , it has the same
dimension as V . Since it is a Fq-subspace, we deduce that |Vλ| = q2n. Let vn :=
λen + fn ∈ Vλ. We observe that Gσvn ⊂ Vλ, i.e. the orbit of vn, is a subset of Vλ, and
hence

∣∣vGσ
n

∣∣ < q2n.
Thus we have found a vector with an orbit that is short enough to be suitable for

our purposes. For we can now use this to effectively compute lower bounds on the size
of Gσ and its subgroups: All these groups induce a permutation action on the orbit
Gσvn. Hence we can compute an homomorphic image into a permutation group. There
are good algorithms (and implementations of them) for determining the size of such a
permutation group.1 Thus, we can efficiently compute a lower bound on the size of a
factor group of any subgroup H of Gσ. If the action induced by the group on the orbit
is faithful, then we actually obtain the exact size of the group. This is the case, but we
do not show it here, as it is not necessary for our needs.

4.3. Subgroups and their sizes

The maximal parabolics of Mi, with respect to our maximal flag F are subgroups of
Gσ ∼= Sp(2n, q) with the following isomorphism type (see [15]):

Mi
∼=

{
Sp(2n− 2i, q)×GU(i, q2) for 1 ≤ i ≤ n− 1
GU(n, q2) for i = n

.

Note that by GU(n, q2) we denote the general unitary group of dimension n over the
field Fq2 (sometimes in the literature this is referred to as GU(n, q), which is also the
notation used by GAP).

1They work better the smaller the set is upon which the group acts, which is why we went to some
effort to find vectors with relatively small orbit.
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So we can compute the size of the Mi, since it is well known (see e.g. [25]) that

|Sp(2n, q)| = qn
2
n∏
i=1

(q2i − 1) and
∣∣GU(n, q2)

∣∣ = qn(n−1)/2
n∏
i=1

(qi + (−1)i+1).

These size formulas are important in the following sections, where we use them to
prove that the groups generated by certain matrices are precisely the groups we are
looking for.

4.4. The case n = 3, q = 3

In this section z denotes a primitive element in F9 over F3 with minimal polynomial
x2 − x− 1. We define the following matrices:

U :=



z7 z1

z7 z5

1
z5 z3

z5 z7

1

 V :=



1
z7 z1

z7 z5

1
z5 z3

z5 z7



W :=



1
1

z7 z1

1
1

z7 z5


In addition to these elements we use diagonal matrices Di, 1 ≤ i ≤ 3, that generate the
stabilizer of the flag F , a half-split torus isomorphic to C3

4 .

Lemma 4.4.1. Each maximal parabolic in Sp(6, 3) is generated by the matrices specified
in the following table together with generators of the flag stabilizer.

stabilizer element generators isomorphism type index
M1 〈e1〉 V,W Sp(4, 3)×GU(1, 9) 44226
M2 〈e1, e2〉 U,W Sp(2, 3)×GU(2, 9) 3980340
M3 〈e1, e2, e3〉 U, V GU(3, 9) 379080

Furthermore, the pairwise intersection of the stabilizers is generated by the intersection
of their generators as given above.

Proof. The claimed generators of each Mi obviously each stabilize the corresponding
element in the table. Hence they generate subgroups of the stabilizers. Also, the in-
tersection of the generators of any two Mi forms a subgroup of the intersection of the
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two groups. To complete the proof, we compute, using GAP and the results from 4.2,
lower bounds of the group sizes. We then verify that they are equal to the sizes of the
maximal parabolics respectively the double stabilizers.

Based on the above table, we find presentations of the maximal parabolics on the gen-
erators d1, d2, d3, u, v, w. These, together with the union of the relators of said presen-
tations give a presentation for the universal completion of the amalgam of the maximal
parabolics.

Coset enumeration over the subgroup generated by d1, d2, d3, v, w gives an index of
44226 which corresponds to the index of M1 in Sp(6, 3). By Lemma 2.1.6 this shows
that Sp(6, 3) is the universal completion of the amalgam of maximal parabolics.

4.5. The case n = 3, q = 4

In this section z denotes a primitive element in F16 over F2 with minimal polynomial
x4 + x+ 1. We define the following matrices:

U :=



z5 z1

z4 z5

1
z5 z4

z1 z5

1

 V :=



1
z5 z1

z4 z5

1
z5 z4

z1 z5



W :=



1
1

z5 z1

1
1

z4 z5


In addition to these elements we use diagonal matrices Di, 1 ≤ i ≤ 3, that generate the
stabilizer of the flag F , a half-split torus isomorphic to C3

5 .

Lemma 4.5.1. Each maximal parabolic in Sp(6, 4) is generated by the matrices specified
in the following table together with generators of the flag stabilizer.

stabilizer element generators isomorphism type index
M1 〈e1〉 V,W Sp(4, 4)×GU(1, 16) 838656
M2 〈e1, e2〉 U,W Sp(2, 4)×GU(2, 16) 228114432
M3 〈e1, e2, e3〉 U, V GU(3, 16) 13160448

Proof. See the proof of Lemma 4.4.1.

15



Based on the above table, we find presentations of the maximal parabolics on the gen-
erators d1, d2, d3, u, v, w. These, together with the union of the relators of said presen-
tations give a presentation for the universal completion of the amalgam of the maximal
parabolics.

Coset enumeration over the subgroup generated by d1, d2, d3, v, w gives an index of
838656 which corresponds to the index of M1 in Sp(6, 4). By Lemma 2.1.6 this shows
that Sp(6, 4) is the universal completion of the amalgam of maximal parabolics.

4.6. The case n = 3, q = 5

In this section z denotes a primitive element in F25 over F5 with minimal polynomial
x2 − x+ 2. We define the following matrices:

U :=



z18 z1

z17 z18

1
z18 z5

z13 z18

1

 V :=



1
z18 z1

z17 z18

1
z18 z5

z13 z18



W :=



1
1

z18 z1

1
1

z17 z18


In addition to these elements we use diagonal matrices Di, 1 ≤ i ≤ 3, that generate the
stabilizer of the flag F , a half-split torus isomorphic to C3

6 .

Lemma 4.6.1. Each maximal parabolic in Sp(6, 5) is generated by the matrices specified
in the following table together with generators of the flag stabilizer.

stabilizer element generators isomorphism type index
M1 〈e1〉 V,W Sp(4, 5)×GU(1, 25) 8137500
M2 〈e1, e2〉 U,W Sp(2, 5)×GU(2, 25) 5289375000
M3 〈e1, e2, e3〉 U, V GU(3, 25) 201500000

Proof. See the proof of Lemma 4.4.1.

Based on the above table, we find presentations of the maximal parabolics on the gen-
erators d1, d2, d3, u, v, w. These, together with the union of the relators of said presen-
tations give a presentation for the universal completion of the amalgam of the maximal
parabolics.
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Coset enumeration over the subgroup generated by d1, d2, d3, v, w gives an index of
8137500 which corresponds to the index of M1 in Sp(6, 5). By Lemma 2.1.6 this shows
that Sp(6, 5) is the universal completion of the amalgam of maximal parabolics.

4.7. The case n = 3, q = 7

This is the biggest of the open cases, with an index of 247163742. Using our standard
representation of the involved groups, that amounts to a memory requirement of about
12 GB when using ACE [9] to perform the coset enumeration. This means that one has
to use a 64bit machine with sufficient memory in order to perform the enumeration.

George Havas, one of the authors of ACE, performed these computations for us on
both a Sparc and an Itanium system with sufficient memory.

In this section z denotes a primitive element in F49 over F7 with minimal polynomial
x2 − x+ 3. We define the following matrices:

U :=



z11 z1

z31 z29

1
z29 z7

z25 z11

1

 V :=



1
z11 z1

z31 z29

1
z29 z7

z25 z11



W :=



1
1

t z11 z1

1
1

z31 z29


In addition to these elements we use diagonal matrices Di, 1 ≤ i ≤ 3, that generate the
stabilizer of the flag F , a half-split torus isomorphic to C3

8 .

Lemma 4.7.1. Each maximal parabolic in Sp(6, 7) is generated by the matrices specified
in the following table together with generators of the flag stabilizer.

stabilizer element generators isomorphism type index
M1 〈e1〉 V,W Sp(4, 7)×GU(1, 49) 247163742
M2 〈e1, e2〉 U,W Sp(2, 7)×GU(2, 49) 605551167900
M3 〈e1, e2, e3〉 U, V GU(3, 49) 12070787400

Proof. See the proof of Lemma 4.4.1.
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Based on the above table, we find presentations of the maximal parabolics on the gen-
erators d1, d2, d3, u, v, w. These, together with the union of the relators of said presen-
tations give a presentation for the universal completion of the amalgam of the maximal
parabolics.

Coset enumeration over the subgroup generated by d1, d2, d3, v, w gives an index of
247163742 which corresponds to the index of M1 in Sp(6, 7). By Lemma 2.1.6 this shows
that Sp(6, 7) is the universal completion of the amalgam of maximal parabolics.

4.8. The case n = 4, q = 2

In this section z denotes a primitive element in F4 over F2 with minimal polynomial
x2 + x+ 1. We define the following matrices:

P1 :=



1
1

1 z z2

1 z2 1
1

1
z2 z 1
z 1 1


P2 :=



1
1

1
1

1
1

1
1



P3 :=



1
z2 1 1
1 z2 1
1 1 z2

1
z 1 1
1 z 1
1 1 z


P4 :=



1
1

1
1

1
1

1
1



P5 :=



z 1 1
1 z 1
1 1 z

1
z2 1 1
1 z2 1
1 1 z2

1


P6 :=



1
1

1
1

1
1

1
1
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P7 :=



1
1

1
1

1
1

1
1


In addition to these elements we use diagonal matrices Di, 1 ≤ i ≤ 4, that generate the
stabilizer of the flag F , a half-split torus isomorphic to C4

3 .

Lemma 4.8.1. Each maximal parabolic in Sp(8, 2) is generated by the matrices specified
in the following table together with generators of the flag stabilizer.

stabilizer element generators isomorphism type index
M1 〈e1〉 P1, P2, P3, P6, P7 Sp(6, 2)×GU(1, 4) 10880
M2 〈e1, e2〉 P1, P4, P6, P7 Sp(4, 2)×GU(2, 4) 3655680
M3 〈e1, e2, e3〉 P2, P4, P5, P7 Sp(2, 2)×GU(3, 4) 12185600
M4 〈e1, e2, e3, e4〉 P2, P3, P4, P5, P6 GU(4, 4) 609280

Proof. See the proof of Lemma 4.4.1.

Based on the above table, we find presentations of the maximal parabolics on the
generators d1, d2, d3, d4, p1, p2, p3, p4, p5, p6, p7. These, together with the union of the
relators of said presentations give a presentation for the universal completion of the
amalgam of the maximal parabolics. The following presentations define each maximal
parabolic.

Coset enumeration over the subgroup generated by d1, d2, d3, d4, p1, p2, p3, p6, p7 gives
an index of 10880 which corresponds to the index of M1 in Sp(8, 2). By Lemma 2.1.6 this
shows that Sp(8, 2) is the universal completion of the amalgam of maximal parabolics.

4.9. Summary

Combining the results from the preceding sections yields this proposition:

Proposition 4.9.1. For (n, q) ∈ {(3, 3), (3, 4), (3, 5), (3, 7), (4, 2)}, Gσ is the universal
completion of A(n−1).

All computations (except those for (n, q) = (3, 7)) were performed on an Apple Power-
Book G4 1.5Ghz with 1 GB RAM using GAP 4.4.5. Computation times ranged from a
few seconds up to about half an hour (for (n, q) = (3, 5)); memory requirements ranged
up to 350 MB (again for (n, q) = (3, 5)). Details regarding (n, q) = (3, 7) are mentioned
in Section 4.7.
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5. Simple connectedness of the geometry

In this chapter we will prove that for n = 3, q ≥ 7, the geometry Gherm
C is simply

connected. By the following lemma, this implies that Sp(6, q) is the universal completion
of the amalgam of its maximal parabolics, as desired. This yields another proof for the
case (3, 7) which we already treated in Section 4.7.

Tits’ Lemma. Suppose a group G acts flag-transitively on a geometry G, and let A be
the amalgam of parabolics associated with some maximal flag F of G. Then G is the
universal completion of the amalgam A if and only if G is simply connected.

For a proof, refer for example to [8], [12], [16] or [26].

5.1. Simple connectedness

We have transformed our group theoretic problem (analyzing the universal completion
of an amalgam) into a geometric one (showing that a certain geometry is simply con-
nected). We now have to consider how to solve the latter problem. In particular, it is
not immediately clear that this new problem is easier than the original problem. We
need some mathematical tools and facts in order to tackle it successfully.

Being simply connected means the following for our geometry: All cycles in its inci-
dence graph have to be null-homotopic (for details, see for example [22]).

If q ≥ 3, every cycle in the incidence graph of Gherm
C is homotopic to a cycle passing

exclusively through points and lines (Lemma 5.1 in [15]). Since Gherm
C is a partially

linear geometry, i.e., distinct points have at most one line joining them, the points
of such a cycle uniquely determine the lines of the cycle. Hence it suffices to study
cycles of the collinearity graph of Gherm

C . Since the diameter of the collinearity graph is
two (see Lemma 4.5 in [15]), every cycle of length at least six always decomposes into
smaller cycles (i.e. it is the sum of these smaller cycles), and hence it suffices to study
triangles, quadrangles and pentagons of the collinearity graph in order to prove simple
connectedness.

5.2. Some tools

The following lemma will prove to be very useful throughout the whole section.
Recall the terminology and definitions introduced in Section 2.3. Notice that if l is

a two-dimensional subspace of V of ((·, ·))-rank at least one, then it contains at least
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q2 − q points of Gherm
C . Indeed, if the ((·, ·))-rank of l is one then the radical is the only

non-trivial isotropic subspace of l and if the ((·, ·))-rank of l is two then l contains q+ 1
distinct non-trivial isotropic subspaces. In particular, any point of Gherm

C is (·, ·)-singular,
and hence if l has ((·, ·))-rank one (respectively, two) it contains q2 (respectively, q2− q)
points of Gherm

C .

Lemma 5.2.1. Let p be a point of Gherm
C and Π ⊃ p be a three-dimensional subspace

of V of ((·, ·))-rank at least two such that p is in the (·, ·)-radical of Π. Then for any
((·, ·))-nondegenerate two-dimensional subspace l of Π, all points of Gherm

C incident with
l are collinear to p, with the exception of at most q + 1 points.

Proof. Since p is in the (·, ·)-radical of Π, all lines passing through p will be totally
isotropic with respect to (·, ·) so we only need to consider ((·, ·)). Note that a two-
dimensional subspace of Π has at least ((·, ·))-rank one.

Consider l1 = p⊥⊥ ∩ Π. Then there are at least q2 − q lines of Gherm
C incident to p

that intersect l1 in a point of Gherm
C . If l is any other two-dimensional subspace of Π of

((·, ·))-rank at least one not containing p, then of the q2 + 1 one-dimensional subspaces
(including the points) it contains, q2− q intersect one of these lines. Hence at most q+1
do not intersect any of the lines, from which the lemma follows.

A direct consequence of this is that if l has ((·, ·))-rank one (respectively, two) it
contains at least q2− q− 1 (respectively, q2− 2q− 1) points collinear to p. Furthermore,
we actually showed:

Lemma 5.2.2. Let p be a point of Gherm
C and Π ⊃ p be a three-dimensional subspace of

V of ((·, ·))-rank at least two. Then any two-dimensional subspace l of Π not containing
p is incident with at least q2−q−1 (respectively, q2−2q−1) points of Gherm

C that generate
a ((·, ·))-nondegenerate two space with p if l has ((·, ·))-rank one (respectively, two).

5.3. Triangles

The first step is the analysis of triangles of the collinearity graph. We will call a triangle
(a, b, c) a good triangle if a, b and c are incident to a common plane of the geometry.
A triangle that is not good is called bad. Note that a good triangle is null-homotopic,
so we only have to deal with the bad ones.

Lemma 5.3.1. Let (a, b, c) be a bad triangle. Then we can decompose this triangle into
bad triangles, in such a way that for each new triangle Ti we can find a canonical basis

e1, e2, e3, f1, f2, f3

of V such that each Ti equals

〈e1〉, 〈e2〉, 〈xie1 + yie2 + (kie3 + f3)〉

with kik̄i = −1 and xiyi 6= 0 and xix̄i + yiȳi 6= 0.
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Proof. This is a consequence of the Lemmas 5.3, 5.4 and 6.1 in [15].

So by the preceding Lemma we only have to show for a very limited class of (bad)
triangles that they can be decomposed.

a

p′′

p′

b

p

c

Figure 5.1.: Octahedron construction used in Lemma 5.3.2

To do this, we start with a triangle (a, b, c) and construct an octahedron with the tri-
angle forming one face, and a suitably chosen null-homotopic triangle (p, p′, p′′) forming
the opposite face, as depicted in Figure 5.1. With suitably chosen we mean that all
triangles except for the starting triangle shall be decomposable. In the following we will
prove that this is possible for q ≥ 4.

Before we do that, we need some more tools.

Lemma 5.3.2. Let k, l ∈ Fq2 such that kk̄ = −1, l 6= 0 Then there exists a matrix of
the form

A :=



1
1

x −ȳ
1

1
y x̄

 ∈ Gσ

such that (ke3 + f3)A = (kl̄e3 + lf3).
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Proof. It is easy to verify that A ∈ Gσ if and only if xx̄+ yȳ = 1. Furthermore

(ke3 + f3)A = (kx+ y)e3 + (x̄− kȳ)f3 = k(x̄− kȳ)e3 + (x̄− kȳ)f3.

So the claim is equivalent to showing that the following system of equations has a
solution:

xx̄+ yȳ = 1 and x̄− kȳ = l

Finding such a solution is easily achieved via straight forward computation: use the
second equation to replace the x variable in the first equation:

(l + kȳ)(l + kȳ) + yȳ = 1
⇐⇒ ll̄ + lk̄y +

(
lk̄y

)
= 1

⇐⇒ z + z̄ = 1− ll̄ ∈ Fq

where z := lk̄y. Now if r is a primitive root of Fq2 , then r+ r̄ 6= 0 and hence z = r(1−ll̄)
r+r̄

is a solution to this last equation. Backward substitution yields the desired values for x
and y.

Lemma 5.3.3. For 4 ≤ q ≤ 11, any bad triangle can be decomposed into good triangles.

Proof. Let a, b, c be a bad triangle. By Lemma 5.3.1, we can assume

(a, b, c) = (〈e1〉, 〈e2〉, 〈xe1 + ye2 + (ke3 + f3)〉)

satisfying kk̄ = −1 and xy 6= 0 and xx̄+ yȳ 6= 0.
Since x 6= 0, by Lemma 5.3.2 we can find g ∈ Gσ such that

(ag, bg, cg) = (〈e1〉, 〈e2〉, 〈xe1 + ye2 + (kx̄e3 + xf3)〉) = (〈e1〉, 〈e2〉, 〈e1 + y′e2 + (k′e3 + f3)〉)

with y′ := y
x and k′ := kx̄

x . So every bad triangle is conjugate to such a triangle. Note
that k′k̄′ = kk̄xx̄

xx̄ = −1, so k′ can take at most q+ 1 different values. Since y′ 6= 0, it can
take at most q2 − 1 different values. Hence there are at most (q + 1)(q2 − 1) different
conjugacy classes of bad triangles to consider.

It is now a simple matter of combinatorics to determine all the possible conjugacy
classes of bad triangles for a given q, and then testing for each whether the triangle
defined this way is decomposable. We now claim that for 4 ≤ q ≤ 11 this is possible by
using the octahedron construction described above, and setting

(p, p′, p′′) = (〈f3〉, 〈se1 + kf1 − xf3〉, 〈te2 + kf1 − yf3〉)

where s, t ∈ Fq2 \ {0} are chosen suitably.
Verifying that this is possible requires at most (q+1)(q2−1)3 checks. This can readily

be done using a simple GAP program (see Appendix D). In particular we successfully
performed these checks for 4 ≤ q ≤ 11. 1

1This upper bound could easily be increased, but of course we had to stop at some point. We picked it
so that it complements the previous proof presented in [15] which works without computer help for
q ≥ 13. So stopping at q = 11 is arbitrary, and the code should work for bigger values of q, too.
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5.4. Quadrangles

Now we will shift our attention to quadrangles. By the preceding results, it is enough to
decompose quadrangles into triangles, regardless whether they are good or bad. Notice
that if in a quadrangle a, b, c, d we have that a and c (or b and d) are collinear then this
quadrangle is immediately decomposed into two triangles.

Definition 5.4.1. We call a quadrangle a, b, c, d half-special if 〈a, c〉 or 〈b, d〉 is nonde-
generate with respect to both forms (·, ·) and ((·, ·)). We call it special if both 〈a, c〉 and
〈b, d〉 are nondegenerate with respect to both forms.

Lemma 5.4.2. Let q ≥ 5. Then any quadrangle can be decomposed into triangles and
half-special quadrangles.

Proof. Consider an arbitrary quadrangle a, b, c, d. Without loss of generality we may
assume that b and d are noncollinear. Pick an arbitrary point

s ∈ X = a⊥⊥ ∩ b⊥ ∩ d⊥.

The point s exists because X is not totally isotropic with respect to ((·, ·)), being a three-
dimensional space contained in the nondegenerate five-dimensional space a⊥⊥. The line
l = 〈a, s〉 has ((·, ·))-rank two. Using Lemma 5.2.2, the line l contains at least q2−2q−1
points of Gherm

C that are collinear with b, respectively d, and at least q2 − 2q − 1 points
of Gherm

C that generate a nondegenerate two-dimensional space with c. Since q ≥ 5 and
since l contains q2− q points of Gherm

C , the space l has to contain a point p of Gherm
C that

generates a nondegenerate two-dimensional space with c and that is collinear to both b
and d. Clearly a, b, c, d decomposes into a, b, p, d and c, b, p, d. If (a, p) = 0 then
〈a, p〉 is a line, implying that a, b, p, d decomposes into triangles. Otherwise, a, b, p, d
is half-special w.r.t. 〈a, p〉. Similarly for c, b, p, d.

Corollary 5.4.3. Let q ≥ 5. Then any quadrangle can be decomposed into triangles and
special quadrangles.

Proof. Apply Lemma 5.4.2 once to obtain triangles and half-special quadrangles. Then
apply Lemma 5.4.2 again, after suitably renaming the vertices of the quadrangles, to
obtain special quadrangles.

Proposition 5.4.4. Let q ≥ 7. Then any quadrangle can be decomposed into triangles.

Proof. Denote the quadrangle by

(a, b, c, d).
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By the preceding lemma, we can assume w.l.o.g. that it is special, so (a, c) 6= 0 6= (b, d)
and both 〈a, c〉 and 〈b, d〉 are ((·, ·))-nondegenerate. We try to find a point p collinear to
all of a, b, c, d, which means we can decompose the quadrangle into triangles (see Figure
5.2).

Set

W := a⊥ ∩ c⊥ and U1 := W ∩ b⊥ and U2 := W ∩ d⊥ and l := U1 ∩U2.

Note that dimW = 4, dimU1 = dimU2 = 3, dim l = 2. Also, W is ((·, ·))-nondegenerate
since 〈a, c〉 is ((·, ·))-nondegenerate and

W = a⊥ ∩ c⊥ = (aσ)⊥⊥ ∩ (cσ)⊥⊥ = 〈aσ, cσ〉⊥⊥ = (〈a, c〉σ)⊥⊥ .

Similar arguments hold for a⊥ ∩ b⊥, b⊥ ∩ c⊥ and so on.

p

b

d
c

a

Figure 5.2.: Basic quadrangle decomposition as used in Proposition 5.4.4

We now distinguish three cases:

(1) If l is of ((·, ·))-rank two, then we can apply Lemma 5.2.1 to the planes 〈a, l〉, 〈b, l〉,
〈c, l〉, and 〈d, l〉 to obtain q2 − 5q− 4 points of Gherm

C on l collinear to all of a, b, c,
d. Notice that this is a positive number for q ≥ 7.

(2) Suppose now that l is of ((·, ·))-rank one. Then the plane Π := 〈b, l〉 has ((·, ·))-
rank at least one. It lies inside the four-dimensional ((·, ·))-nondegenerate space
W . Assume Π had ((·, ·))-rank one. Then it has a two-dimensional ((·, ·))-radical
R, which would be maximal totally isotropic in W , since dim(R)+dim(R⊥⊥∩W ) =
dim(W ) and R ⊆ R⊥⊥. Similarly, R can not have a polar of dimension three, which
Π would be. Contradiction, thus Π has ((·, ·))-rank two. Similar arguments hold
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for the points a, c, d instead of b. Applying Lemma 5.2.1 gives us q2 − 4q − 4
points of Gherm

C collinear to all of a, b, c, d. Notice that this is a positive number
for q ≥ 5.

(3) Suppose now l is totally isotropic with respect to ((·, ·)). Then the planes U1 and
U2 are ((·, ·))-degenerate. They must have ((·, ·))-rank two (this can be shown with
similar arguments as used in case (2) for Π).

Let R1 and R2 be the one-dimensional ((·, ·))-radicals of U1 and U2. They are
contained in l. For assume that R1 6⊆ l; then U1 = 〈R1, l〉. But then U1 would be
totally isotropic (since l is totally isotropic, and also orthogonal to R1, the radical
of U1), a contradiction. We argue likewise for R2.

Furthermore, the radicals cannot coincide as otherwise we would obtain a radical
for the ((·, ·))-nondegenerate space a⊥ ∩ c⊥. So we have l = 〈R1, R2〉. Notice that
b 6⊂ l, since (b, d) 6= 0. Hence b is different from R1 and R2.

Choose a line t of Gherm
C through b inside U1. This line exists since the ((·, ·))-rank

of U1 is two, and b is not in the ((·, ·))-radical R1 of U1. Applying first Lemma
5.2.2 to 〈d, t〉 and then Lemma 5.2.1 to 〈a, t〉 and 〈c, t〉 yields the existence of

(q2 − 2q − 1)− 2(q + 1) = q2 − 4q − 3 > 0

points on t collinear to a, b, c and which span a ((·, ·))-nondegenerate space with
d. Choose one of these points not equal to b and call it b′. Then (b′, d) 6= 0, for
otherwise, b′ ∈ l, contradicting that l is totally isotropic with respect to ((·, ·)).
Hence a, b′, c, d form a special quadrangle (see Figure 5.3).

b′

b

d
c

a

p

Figure 5.3.: Quadrangle decomposition in case l is degenerate.
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Let U ′
1 := b′⊥ ∩ W . We claim that U ′

1 intersects U2 in a line l′ that does not
contain R2, implying the ((·, ·))-rank of l′ is two (since it is contained in U2 which
has ((·, ·))-rank two and doesn’t intersect its radical) and so we have reduced to
case (1) of this proof.

It remains to verify our last claim. Assume R2 ⊂ U ′
1 ∩ U2 = l′. Then

R2 ⊆ l ∩ l′ = (b⊥ ∩ b′⊥) ∩ U2 = (〈b, b′〉⊥) ∩ U2 ⊂ 〈b, b′〉⊥ = t⊥,

thus t ⊆ R⊥
2 ∩U1. Notice that R⊥

2 ∩U1 = 〈b, R2〉: Clearly 〈b, R2〉 ⊆ R⊥
2 ∩U1, since

R2 ⊂ R⊥
2 , R2 ⊂ l ⊂ U1, b ⊂ U1 and b ⊂ l⊥ ⊂ R⊥

2 . Equality holds since R2 is
one-dimensional, and R2 is not the (·, ·)-radical of U1 (which is b, and we already
know that b 6= R2), and thus both sides of the equation have the same dimension.
But then also t = 〈b, R2〉, implying that t has ((·, ·))-rank one, a contradiction
since t is a line of Gherm

C .

Note that the ‘pyramid’ construction used in the preceding proposition is not sufficient
for q ≤ 5, so a different approach would be needed to cover it. For a specific example, let
z denote a primitive element in F25 over F5 with minimal polynomial x2 − x+ 2. Then
let

a := 〈e1〉, b := 〈e2〉, c := 〈e2 + z−1e3 + z−1f1〉, d := 〈e1 + z5e2 + z6f2 + z9f3〉.

This is a special quadrangle, and using the definitions from Proposition 5.4.4, l := 〈u, v〉
with u := 〈e1 + f3〉, v := 〈e2 + z9e3〉. Now l has ((·, ·))-rank two, but contains no point
p collinear to all of a, b, c, d.

5.5. Pentagons

Proposition 5.5.1. Let q ≥ 5. Then any pentagon can be decomposed into triangles
and quadrangles.

Proof. Let (a, b, c, d, e) be a pentagon. Consider the space U := 〈a, b, d〉⊥ of dimension
three. Its ((·, ·))-rank has to be at least two, as the ((·, ·))-rank of 〈a, b〉 is two. Choosing
a ((·, ·))-nondegenerate two-dimensional subspace l of U and applying Lemma 5.2.1 on
the planes 〈a, l〉, 〈b, l〉, 〈d, l〉, we will find

(q2 − q)− 3(q + 1) = q2 − 4q − 3 > 0

points on l collinear to all of a, b, d, decomposing the pentagon.
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de

b

a p c

Figure 5.4.: Pentagon decomposition as used in Proposition 5.5.1

5.6. Summary

Combining the results from the preceding sections yields this proposition:

Proposition 5.6.1. If n = 3 and 7 ≤ q ≤ 11, the geometry GhermC is simply connected.

Using the above and the work done in [15] we can now proof our main result in Section
3.1.

Proof of Theorem 3.1.1. We show that the geometry GhermC is simply connected if and
only if n ≥ 3 and (n, q) 6= (3, 2). From this follows the claim via Tit’s Lemma (page 20).

Simple connectedness for n ≥ 3 and (n, q) 6= (3, 2) is proved conjointly by Proposition
5.6.1, by combining the results from Chapter 4 with Tits’ Lemma, and finally by Theorem
6.8 from [15].

If (n, q) = (3, 2), then the geometry is not simply connected, as shown in [15], right
after Theorem 6.8.

Finally, if n = 2, the simplicial complex is one dimensional, and hence only simply
connected if it contains no cycles (i.e. if it is a tree). But the points 〈e1〉, 〈e2〉, 〈f1〉, 〈f2〉
form a quadrangle, and hence there exists a non-trivial cycle in the simplicial complex,
thus the geometry is not simply connected.
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6. Phan-type theorems

As was already mentioned in Section 3.2, the main motivation of this thesis was to
strengthen the Phan-type theorems for Cn. We will not give a proper proof of this
theorem, as the work done previously in this regard remains essentially unchanged – our
new bounds simply have to be plugged in. We will only sketch the steps of the proof.

We first give some required definitions in Sections 6.1 and 6.2. In Section 6.4 we
outline the proof of the Phan-type theorems for Cn as given in Section 6.3.

6.1. Diagrams

Diagrams, in particular Dynkin diagrams first occured in the classification work of Car-
tan (for complex semisimple Lie algebras) and Coxeter (for finite reflection groups). For
a proper introduction to the theory of diagrams, see for example [6] or [19]. However,
to understand the (limited) use of diagrams in this thesis, the reader does not have to
know the full theory behind them.

For our purposes, a diagram is a graph without loops but possibly with multiple edges,
and where multiple edges are directed.

We will use Diagrams to describe subgroups of a group G: If (Gi)i∈I is a finite family of
subgroups of G, then we form a diagram where the nodes correspond to these subgroups.
The kind of edge (or lack of an edge) between two nodes i and j is used to encode how
the two subgroups Gi and Gj are related.

An :
1◦ 2◦ 3◦ · · · n−2◦ n−1◦ n◦

Bn :
1◦ 2◦ 3◦ · · · n−2◦ n−1◦ > n◦

Cn :
1◦ 2◦ 3◦ · · · n−2◦ n−1◦ < n◦

Dn :
1◦ 2◦ 3◦ · · · n−3◦ n−2

◦

◦ n◦

Figure 6.1.: Four fundamental Dynkin diagram series.

The infinite series of diagrams shown in Figure 6.1 play an important role in several
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mathematical topics, especially in classification of (finite) reflection groups and in Lie
theory. In fact, the theorems presented in this thesis correspond in a certain way to the
diagram Cn. See also Appendix A.

6.2. Phan systems

Definition 6.2.1 (Standard pair in unitary group). Subgroups U1 and U2 of SU(3, q2)
form a standard pair whenever each Ui ∼= SU(2, q2) is the stabilizer in SU(3, q2) of a
nonsingular vector vi and, furthermore, v1 and v2 are perpendicular. Standard pairs in
central quotients of SU(3, q2) are defined as the images under the natural homomorphism
of the standard pairs from SU(3, q2). We denote a standard pair U1, U2 of a central
quotient of SU(3, q2) by

U1

◦
U2

◦.

In the following we use the terminology from Section 2.3.
For an element U of Gherm

C , i.e. a (·, ·)-totally singular, ((·, ·))-nondegenerate subspace
of V , let GU(U) denote the subgroup of Gσ that preserves the form ((·, ·)) |U×U and
acts trivially on U⊥ ∩ U⊥⊥.

For a nondegenerate σ-invariant subspace W of V denote by Sp(W ) the subgroup
of Gσ that preserves the form (·, ·)|Wλ×Wλ

(see 4.2.1 for the definition of Wλ) and acts
trivially on U⊥ ∩ U⊥⊥.

Definition 6.2.2 (Standard pair in symplectic group). In case n = 2, we have V =
〈e1, eσ1 , e2, eσ2 〉, G ∼= Sp(4, q2), and Gσ ∼= Sp(4, q). Subgroups U1

∼= Sp(2, q) and U2
∼=

SU(2, q2) are called a standard pair in Gσ if there exists a (·, ·)-isotropic and ((·, ·))-
non-isotropic vector v of V and a two-dimensional (·, ·)-totally isotropic and ((·, ·))-
nondegenerate subspace U 3 v of V such that the group U1 coincides with Sp(v⊥ ∩ v⊥⊥)
and the group U2 coincides with SU(U). Standard pairs in central quotients of Sp(4, q)
are defined as the images under the natural homomorphism of the standard pairs from
Sp(4, q). We denote the standard pair U1, U2 of Sp(4, q) by

U1

◦ >

U2

◦ or by
U2

◦ <

U1

◦.

Definition 6.2.3 (Weak Phan System). Let n ≥ 2, let ∆ be a Dynkin diagram with
rank two subdiagrams isomorphic to

◦ ◦ or ◦ ◦ or ◦ > ◦,
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and let I = {1, . . . , n}. A group G admits a weak Phan system of type ∆ over Fq2
if G contains subgroups

Ui ∼= SL(2, q) ∼= Sp(2, q) ∼= SU(2, q2),

for i ∈ I, and subgroups

Uij ,

for i 6= j ∈ I, so that the following hold:

(wP1) If (i, j) is not an edge in ∆, then Uij is a central product of Ui and Uj ;

(wP2) if (i, j) is an edge in ∆, then Uij is isomorphic to a central quotient of SU(3, q2),
if (i, j) is a single edge, and isomorphic to a central quotient of Sp(4, q), if (i, j)
is a double edge; moreover, Ui and Uj form a standard pair in Uij according to
the diagram

Ui

◦
Uj

◦ or
Ui

◦ >
Uj

◦; and

(wP3) the subgroups Uij , i, j ∈ I, generate G.

6.3. Phan-type theorems

Note that the first theorem is the interesting case; the second one is a (somewhat com-
plicated) generalization to q = 2.

Main Theorem 1. Let q ≥ 3, let n ≥ 3, and let G be a group that contains a weak Phan
system of type Cn over Fq2. Then G is isomorphic to a central quotient of Sp(2n, q).

Main Theorem 2. Let q = 2, let n ≥ 4, and let G be a group that contains a weak
Phan system of type Cn over Fq2. Suppose further that

(1) for any triple i, j, k of nodes of the Dynkin diagram Cn that form a subdiagram

i◦
j
◦ k◦

of type A3, the subgroup 〈Ui,j , Uj,k〉 is isomorphic to a central quotient of SU(4, q2);

(2) for any triple i, j, k of nodes of the Dynkin diagram Cn that form a subdiagram

i◦
j
◦ < k◦

of type C3, the subgroup 〈Ui,j , Uj,k〉 is isomorphic to a central quotient of Sp(6, q);
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(3) (i) for any triple i, j, k of nodes of the Dynkin diagram Cn that form a subdiagram

i◦
j
◦ k◦

of type A1 ⊕A2, the groups Ui and Uj,k commute elementwise; and

(ii) for any quadruple of nodes of the Dynkin diagram Cn that form a subdiagram

i◦
j
◦ k◦ l◦

of type A2 ⊕A2, the groups Ui,j and Uk,l commute elementwise; and

(iii) for any triple i, j, k of nodes of the Dynkin diagram Cn that form a subdiagram

i◦
j
◦ < k◦

of type A1 ⊕ C2, the groups Ui and Uj,k commute elementwise; and

(iv) for any quadruple of nodes of the Dynkin diagram Cn that form a subdiagram

i◦
j
◦ k◦ < l◦

of type A2 ⊕ C2, the groups Ui,j and Uk,l commute elementwise.

Then G is isomorphic to a central quotient of Sp(2n, q).

6.4. Sketch of proof

The goal is to arrive at a configuration of small subgroups similar to the one Phan
presented, more specifically, a so-called weak Phan system of type Cn over Fq2 (see
Section 6.2).

The configuration we are starting with, A(n−1), is in a sense ‘too big’ – for a Phan
system, we need a configuration of low dimensional groups, which is not the case here.
But via an induction argument one can show that the amalgams of certain lower rank
parabolics are already sufficient to define the group Sp(2n, q). This is what leads to
Theorem 3.1.2.

Note now the isomorphism types of the maximal parabolics:

Mi
∼= Sp(2n− 2i, q)×GU(i, q2), 1 ≤ i ≤ n

(see Section 4.3 for details). The intersection of all Mi is a maximal half-split torus T
of Sp(2n, q) isomorphic to GU(1, q2)n and formed by diagonal matrices. We define the
stripped parabolics as subgroups of Mi of the form

M0
i
∼= Sp(2n− 2i, q)× SU(i, q2), 1 ≤ i ≤ n.
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For an arbitrary parabolic MJ define M0
J :=

⋂
i∈JM

0
i , where J is a subset of the type

set I = {1, . . . , n}. It can be shown that MJ = M0
JT , which explains the name ‘stripped’

– we have removed (stripped) the torus T from the stabilizers. We explain below why
stripping is necessary.

One can show that the minimal stripped parabolics Li := M0
I\i are isomorphic to

SL(2, q), corresponding to the Ui in the definition of a weak Phan system. We define
A0

(s) to be the amalgam formed by the subgroups M0
J for all parabolics MJ of rank s

(obviously this includes the Li). This stripped amalgam can be shown to induce a weak
Phan system of type Cn over Fq2 in any nontrivial completion. It remains to classify
certain classes of so-called Phan amalgams (again, see [13]). All in all, the reward for
these efforts are the two Phan-type theorems we presented in Section 6.3.

6.5. Why stripping the parabolics is necessary

Before we conclude this chapter, we give a brief argument why we are using stripped
parabolics instead of plain parabolics.

We already mentioned that the minimal stripped parabolics Li are isomorphic to
SL(2, q), corresponding to the Ui in the definition of a weak Phan system. If we had
not stripped the torus, the isomorphism type would have been SL(2, q) o GU(1, q2)n−1.
So the stripping ensures that we obtain a weak Phan system of type Cn over Fq2 in any
non-trivial completion.

But why did we define weak Phan systems like this in the first place? Why not abandon
the stripping and instead change the definition to match what we have? Because then
the main theorem would not follow! Consider this example: If we form the amalgam
of parabolics in PSp(2n, q) and compute its universal completion, we arrive again at
PSp(2n, q). But for our Main Theorems, we really would like to get Sp(2n, q), showing
that PSp(2n, q) is a central quotient of Sp(2n, q). Of course we already knew that, but
there are other less trivial cases where the same problem arises.

However, the universal completion of the stripped amalgam of PSp(2n, q) is indeed
Sp(2n, q), as desired. So the stripping ‘removes’ the difference between the amalgams of
Sp(2n, q) and PSp(2n, q) (a bit more technically spoken, what happens here is that we
throw away the maximal torus and reconstruct it from the amalgam). This might help
convey a certain understanding as to why the stripping is important in order to arrive
at a Phan-type theorem.
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A. The case (n, q) = (3, 3) reviewed

In this thesis, we have dealt with the groups Sp(2n, q) and extended a Phan-type theorem
for these groups. Note that this group corresponds to the family of Dynkin diagrams
Cn. This diagram series is one of four such infinite families, and to each corresponds
a certain classical group, a geometry like the one described in Section 2.3, as well as a
Phan-type theorem. Figure A.1 lists which diagram corresponds to which group, and
cites appropriate references which deal with the corresponding Phan-type theorem.

Type Group References

An SU(n+ 1, q2) [4], [12], [20]

Bn Spin(2n+ 1, q) [2]

Cn Sp(2n, q) [11], [12], [13], [15]

Dn Spin(2n, q) [12], [14], [18], [21]

Figure A.1.: Correspondence between Dynkin diagrams and classic groups.

We briefly want to revisit the case (n, q) = (3, 3) and compare results for it in the four
cases listed above.

In this thesis, we proved that for (n, q) = (3, 3), the geometry corresponding to Sp(6, 3)
and C3 is simply connected, and the group itself is the universal completion of its stan-
dard Phan amalgam1.

In case of A3 or equivalently D3, however, one can show that either a three-fold or
a nine-fold cover of the geometry exists. (Richard Lyons gave a simple argument for
this, see page 86 of [12]). However, nothing was known so far about the universal cover.
Recently the author successfully applied the techniques used in this thesis to the case
D3 and determined the universal cover, which turned out to be nine-fold.

Finally, for B3 nothing was known so far. The author applied the techniques of
this thesis here, too. The unexpected result was that the coset enumeration (used to
determine the size of the universal completion of the amalgam of parabolics) did not
terminate. Based on this, we conjecture that the geometry is not simply connected, and
may even admit an infinite cover.

1For a definition of a standard Phan amalgam of type Cn, refer to [15].
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B. Group presentations

In this appendix, we give finite presentations for the groups described in Chapter 4.
These can be used to reproduce the group index calculations mentioned there. With
[·, ·] we will denote the standard commutator bracket, i.e. [a, b] := aba−1b−1.

B.1. n = 3, q = 3

We give here presentations of the maximal parabolics on the generators d1, d2, d3, u, v, w.
To each presentation the relators d4

i for 1 ≤ i ≤ 3 and [di, dj ] for 1 ≤ i < j ≤ 3 need to
be added.

Generators for M1: d1, d2, d3, v, w.
Relators for M1:

v3, w3, [v, d1], [w, d1], [w, d2], d2v
−1d3v

−1d−2
3 , wd3wd3wd

−1
3 ,

vwv−1wd−1
3 vw−1v−1d3w

−1, d3vwv
−1w−1vw−1v−1d−1

3 vwv−1,

d2vwv
−1w−1v−1d−1

3 d−1
2 wvwv−1w−1d3w

Generators for M2: d1, d2, d3, u, w.
Relators for M2:

u3, w3, [u,w], [u, d3], [w, d1], [w, d2], d1u
−1d2u

−1d−2
2 , wd2

3w
−1d−2

3 , d3wd
−1
3 wd3w

Generators for M3: d1, d2, d3, u, v.
Relators for M3:

u3, v3, [v, d1], [u, d3], d2
2vd2vd3, ud

2
1d2ud1, u

−1vuv−1uv

B.2. n = 3, q = 4

We give here presentations of the maximal parabolics on the generators d1, d2, d3, u, v, w.
To each presentation the relators d5

i for 1 ≤ i ≤ 3 and [di, dj ] for 1 ≤ i < j ≤ 3 need to
be added.

Generators for M1: d1, d2, d3, v, w.
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Relators for M1:

v2, w2, [v, d1], [w, d1], [w, d2], (wd3)3, (vw)4, vd2d3vd
−1
2 d−1

3 , (vd3d
−1
2 )3,

(wvwvd2
3)

4, wd1vd3wd3d2vd3d
2
2vwd3vd

−1
1 d2wvd3wvwd

−1
3 vd−1

2 d3wd
−1
3 wd3,

(wd−2
3 wvwvd−2

3 wd2
3)

2, d3d1d3vwvwd1d3vwvd
−1
3 vwd−2

1 vd−2
3 wd−2

3 w,

d−2
3 wvd−1

2 d2
3wd

−1
3 vwvd3wd

−1
3 vwvd3wd

−2
3 wd2

3wvd3wv,

d2vd3wvwd
−1
3 vwd−1

2 d3vwvd3wd
−1
3 wd3wd

−1
3 wd2

3wd
−2
3 vwvd−2

3

Generators for M2: d1, d2, d3, u, w.
Relators for M2:

u2, w2, [u,w], [u, d3], [w, d1], [w, d2], d−1
3 wd−1

3 wd−1
3 w, ud2

2ud
−2
1 ud−1

1 d2,

ud2d1ud
−1
1 d−1

2 , ud1ud
−1
1 ud−1

1 ud1ud
−1
1 ud2, wd

−2
3 wd2

3wd
−2
3 wd2

3wd
−2
3 wd2

3

Generators for M3: d1, d2, d3, u, v.
Relators for M3:

u2, v2, [u, d3], [v, d1], d2d
−1
3 vd−2

3 vd2
2v, ud1vd3vd

−1
3 d2vd3vd

−1
1 ud−2

3 ,

vd2
3ud1vd

2
3uvd

−2
3 uvd−1

1 ud−2
3 , d2d

−1
3 uvd−1

1 ud−2
3 vd−2

1 d2d
−1
3 uvd−1

1 ud−2
3 d−2

1 ,

d2d3vd
−1
3 d−1

2 v, d2uvud3vud
2
2d

−1
3 uvd−1

1 ud−2
3 d−1

1 d2d
−1
3 uvd−1

1 ud−2
3 d−1

1 ,

vd−1
1 ud−2

3 d2d
−1
3 uvd−1

1 ud−2
3 d2

1d2d
−1
3 uvd−1

1 ud−2
3 d−1

2 uvd−1
3 uvd−1

3 ,

ud2d1ud
−1
2 d−1

1 , d−1
2 vd−1

3 vd−1
3 d−2

2 d2
3ud1vud3d

−1
2 uvd−1

2 vud1ud
2
3d1vud3d

−1
2 vd−1

1 ,

d2d
−1
3 uvd−1

1 uvd−2
2 vuvd−1

1 d−2
3 ud2d

−1
3 uvd−1

1 d−2
3 ud2d

−1
3 uvd−1

1 d−2
3 ud2d

−1
3 uvd−1

1 d−2
3 u

B.3. n = 3, q = 5

We give here presentations of the maximal parabolics on the generators d1, d2, d3, u, v, w.
To each presentation the relators d6

i for 1 ≤ i ≤ 3 and [di, dj ] for 1 ≤ i < j ≤ 3 need to
be added.

Generators for M1: d1, d2, d3, v, w.
Relators for M1:

[v, d1], [w, d2], [w, d1], [v, d2d3], [w, d3
3], v

−3(d2d3)3, v−1d−1
2 d2

3v
−1d−2

3 d2,

w−1d2
3w

−1d3w
−1d−1

3 w−1d3, d3w
−1d3wd3w

2d3w, d
−1
3 vd−2

2 d−1
3 v−1d−1

3 vd−1
2 v−1,

vd2
2v

−1d3v
−1d−2

3 vd−1
2 , d3vwd2vd

−1
2 w−1vd−2

3 d2w
−1d−1

2 v−1wd3,

vd−2
3 w−1v−1d−1

3 wd−1
3 w−1vd2wvd

−1
2 d3w

−1d−1
3 v−1d3w

−1v−1d−1
3 w−1d3,

d2v
−1wv−1d3d2wv

−1d−1
3 d2v

−1w−1d−1
2 d−2

3 w−1v−1d−1
3 wd3w

3d3w,

d3vwd
−1
3 vd−1

3 v−1wd−1
3 v−1d3vwd

2
3v

−1d−1
3 vd2wvd

−1
2 d−1

3 w2d3w
−1d3
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Generators for M2: d1, d2, d3, u, w.
Relators for M2:

w6, [u,w], [w, d2], [w, d1], [u, d3], d3
3w

3, [u, d1d2], (u−1d3
1)

2, d2
3wd

−1
3 w−1d−1

3 wd−1
3 w−1,

d3
1u

2d−3
2 u−1, wd3wd

−1
3 wd−2

3 wd−1
3 , ud−1

2 u−1d−1
1 u−2d1u

−1d2, d
2
1ud

−1
1 ud1d

−1
2 u−1d−1

1 u−1

Generators for M3: d1, d2, d3, u, v.
Relators for M3:

[v, d1], [u, d3], [v, d2d3], [u, d1d2], (uv)−3, (v−1d3
2)

2, (d3
1u)

−2, d3
1u

2d−3
2 u−1, d3

2v
2d−3

3 v−1,

ud−1
2 u−1d−1

1 u−2d1u
−1d2, vd

−1
3 v−1d−1

2 v−2d2v
−1d3, d

2
2vd

−1
2 vd2d

−1
3 v−1d−1

2 v−1,

ud−1
1 ud2ud

−2
2 u−1d2

1, vuv
−1d−1

3 vu−1v−1ud1u
−1

B.4. n = 3, q = 7

We give here presentations of the maximal parabolics on the generators d1, d2, d3, u, v, w.
To each presentation the relators d8

i for 1 ≤ i ≤ 3 and [di, dj ] for 1 ≤ i < j ≤ 3 need to
be added.

Generators for M1: d1, d2, d3, v, w.
Relators for M1:

[v, d1], [w, d1], [w, d2], [v, d2d2], v3d2v
−1d−1

3 , w2d−1
3 wd3wd3wd

−1
3 , d2

2d3d2d
3
3vd3v,

d3wd
−1
3 w−1d−1

3 w−1d−1
3 wd3, v

−1d3wvd3vw
−1d−1

3 v−1d−1
3 , d3w

2d−2
3 w−1d−2

3 w−2,

vd3w
−1vw−1v−1w3d−1

3 wd−2
3 w−1d3v

2d3wv
−2w−1d−1

3 w−1,

wv−1d−1
3 v−1d−1

2 d2
3d

−1
2 w2d3d

−1
2 d−1

1 v−1d−1
3 d1v

−1d2
3d

−2
2 w2d2

3d
−1
2 ,

d2v
−1d3v

−1w−1d1v
−1d3v

−1d−2
3 w−1vd1d2d

−1
3 w−2d−2

3 d2
2vd

−2
1 d−3

3 wd3,

d2
1v

−1d−2
2 d2

3w
2d3d

−1
2 d−1

1 v−1d−1
1 d3wd3d1vd1d2d

−1
3 w−2d−2

3 d2
2vd

−2
1 w−1d−2

3 ,

d1vd1d2d
−1
3 w−2d−2

3 d2d
−1
3 v−2d3d

−2
2 d2

3w
2d3d

−1
2 v−2d−2

2 d2
3w

2d3d
−1
2 d−1

1 v−1d−1
1 wd3,

d1v
2d3wv

−2w−1d1v
−1d−2

2 d2
3w

2d3d
−1
2 d−1

1 v−1w−1d1v
−1d−2

2 d2
3w

2d3d
−1
2 d−1

1 v−1d−1
1 d−2

3 w−1d3

Generators for M2: d1, d2, d3, u, w.
Relators for M2:

[u,w], [u, d3], [w, d1], [w, d2], ud1d2u
−1d−1

2 d−1
1 , d−1

2 u3d1u
−1, ud2u

5d−1
1 ,

wd2
3wd

−1
3 w−1d−1

3 w−1d−1
3 , d−1

3 w2d−1
3 wd3wd3w, d1d2d1u

−1d2
2d

3
1u

−1,

w2d−4
3 w2, d−1

2 d−1
1 u−1d−1

1 u−1d−2
1 u−1d−1

1 u−1d−2
1 , ud−1

2 d1ud
−1
1 u−1d−1

2 ud2u
−1d2

1d
−1
2

Generators for M3: d1, d2, d3, u, v.
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Relators for M3:

[v, d1], [u, d3], vd2d3v
−1d−1

3 d−1
2 , ud2d1u

−1d−1
1 d−1

2 , d−1
3 v3d2v

−1,

u3d1u
−1d−1

2 , vd3v
5d−1

2 , d2ud
−1
1 ud−1

1 ud2u, d2d
2
1d2d1d2u

−1d1u
−1d1,

d2
2d3v

−1d2
3d

3
2v

−1, v−1u−1v−1d3v
−1u−1v−1u−1d−1

1 u−1,

d−1
3 d−1

2 v−1d−1
2 v−1d−2

2 v−1d−1
2 v−1d−2

2 , ud−1
2 ud−1

2 d−1
1 d−2

2 ud−1
2 ud−2

2 ,

ud1d
−1
2 ud2

2u
−2d−1

1 u−1d1d
−2
2 , v−2u−1v−1u−1v−2u2d1ud

−2
2 d1

B.5. n = 4, q = 2

We give here presentations of the maximal parabolics on the generators d1 till d4 and p1

till p7. To each presentation the relators d3
i for 1 ≤ i ≤ 4 and [di, dj ] for 1 ≤ i < j ≤ 4

need to be added.
Generators for M1: d1, d2, d3, d4, p1, p2, p3, p6, p7.
Relators for M1:

p2
1, p

2
2, p

3
3, p

2
6, p

2
7, [p1, d1], [p1, d2], [p2, d1], [p2, d4], [p2, p3], [p2, p7], [p3, d1], [p3, p6],

[p6, d1], [p6, d2], [p7, d1], [p7, d2], [p7, d3], [p7, d4], (p7p1)4, p2d
−1
2 p2d3, p6d3p6d

−1
4 ,

p−1
3 p2d4p

−1
3 d−1

2 d−1
3 , p6p

−1
3 d2p

−1
3 d−1

4 d−1
3 , p1p7p1p6d4p7p6, d

−1
4 p1d3p1d

−1
3 p6p1p7,

d4p6p1d4p6d
−1
4 p1d

−1
3 , d4p1p7p1d

−1
4 p1p7p1, p1p6d4p1d

−1
3 d−1

4 p1p6d4,

d4p3p7p
−1
3 p7d

−1
4 p3p7p

−1
3 d−1

4 p7, p2p1d
−1
3 p−1

3 p1p7p6p7p6p
−1
3 d3p1d3,

p2p6p1p2d
−1
2 d4p1d4p3p7d

−1
2 p3d4p6p1, p3p7d

−1
2 p3d3p

−1
3 d2p7p3d2p7p6p

−1
3 p7d

−1
3 ,

p3p7d
−1
2 p3p1p

−1
3 d2p7p

−1
3 p7d4p6p1d

−1
4 p6p7p1d

−1
3

Generators for M2: d1, d2, d3, d4, p1, p4, p6, p7.
Relators for M2:

p2
1, p

2
4, p

2
6, p

2
7, [p1, d1], [p1, d2], [p1, p4], [p4, d3], [p4, d4], [p4, p7], [p6, d2], [p7, d1],

[p7, d2], [p7, d3], [p7, d4], (p1p7)4, p4d
−1
1 p4d2, p6d

−1
4 p6d3, p1p7p1d3p6p7p6,

p1p6d
−1
4 p1p7d

−1
4 p1d3, d4p1p6p1d3d

−1
4 p7p1d

−1
3 p7p6

Generators for M3: d1, d2, d3, d4, p2, p4, p5, p7.
Relators for M3:

p2
2, p

2
4, p

3
5, p

2
7, [p2, d1], [p2, d4], [p2, p5], [p2, p7], [p4, d3], [p4, d4], [p4, p5], [p4, p7],

[p5, d4], [p5, p7], [p7, d1], [p7, d2], [p7, d3], [p7, d4], d3p2d
−1
2 p2, p4d

−1
1 p4d2,

p4p5d3p5d
−1
1 d−1

2 , p−1
5 d−1

1 p−1
5 d2d3p2

38



Generators for M4: d1, d2, d3, d4, p2, p3, p4, p5, p6.
Relators for M4:

p2
2, p

2
4, p

2
6, [p2, d1], [p2, d4], [p3, p6], [p4, d3], [p4, d4], [p4, p5], [p4, p6], [p6, d1], [p6, d2],

(p5p3)3, p6d
−1
3 p6d4, d2p4d

−1
1 p4, d3p2d

−1
2 p2, p3p5d1p5p3d

−1
4 , p2p5p3p2p

−1
3 p−1

5 ,

(p5p3d4d
−1
1 )2, d3p6p3d3d

−1
1 d−1

2 d−1
3 p3d1d4, d

−1
1 d−1

4 p3p5p
−1
3 p−1

5 d−1
1 p−1

3 p−1
5 p2,

p4d1p
−1
5 d2p5p3d1d

−1
4 p3p5, p5p

2
3p5d1d4d2d3p

−1
3 , d4d1d

−1
4 p5p3d1d

−1
4 d−1

1 p3p5,

p5d2d3d4p5p3d4p5p3, d2d1p3p4p
−1
3 d−1

4 p5p6p
−1
5 d−1

2 d−1
1 d4p5p3,

p−1
5 p3p4p

−1
3 d−1

1 d−1
2 p5p3p

−1
5 p−1

3 d2d1p5p6,

p3p4p
−1
3 d−1

1 d−1
2 p5p3d4p

−1
5 p−1

3 d1d2p5p6p
−1
5 d−1

1 ,

p−1
3 p−1

5 p2d2d1p3p4p
−1
3 d−1

2 p2d2p5p6p
−1
5 d−1

2 d−1
1 p3p5,

p−1
3 p−1

5 d2p5p6p
−1
5 d−1

1 d−1
2 d4p

−1
3 p−1

5 d2p5p6p
−1
5 d4d

−1
2 d−1

1

39



C. GAP code: Amalgams

C.1. sp63.gap

Main code file for n = 3; this can be used to verify simple connectedness of Sp(6, q).

# $Id: sp63.gap,v 1.58 2005/07/09 21:11:34 maxhorn Exp $

Read("mylib.gap");

# The parameters of our group
n := 3;
q := 3;

Read("common.gap");
Read("build_sp6_gens.gap");
Read("build_rels.gap");
Read("check_amalgam.gap");

C.2. sp82.gap

Main code file for Sp(8, 2). Since for q = 2 we need additional generators, this is separate
from the code for Sp(6, q) since we need more subgroup generators, and we also find those
generators in a different way.

# $Id: sp82.gap,v 1.42 2005/08/21 16:59:54 maxhorn Exp $

Read("mylib.gap");

# The parameters of our group
n := 4;
q := 2;

Read("common.gap");

##########################################
# Determining suitable generators.
##########################################
Print("Determining suitable generators...\n");
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# We list a hard coded set of generators here.
p :=
[ [ [ 1, 0, 0, 0, 0, 0, 0, 0 ],

[ 0, 1, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, z^1, z^2 ],
[ 0, 0, 0, 1, 0, 0, z^2, 1 ],
[ 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 0, z^2, z^1, 0, 0, 1, 0 ],
[ 0, 0, z^1, 1, 0, 0, 0, 1 ] ],

[ [ 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 1, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 1 ] ],

[ [ 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, z^2, 1, 1, 0, 0, 0, 0 ],
[ 0, 1, z^2, 1, 0, 0, 0, 0 ],
[ 0, 1, 1, z^2, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, z, 1, 1 ],
[ 0, 0, 0, 0, 0, 1, z, 1 ],
[ 0, 0, 0, 0, 0, 1, 1, z ] ],

[ [ 0, 1, 0, 0, 0, 0, 0, 0 ],
[ 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 1 ] ],

[ [ z, 1, 1, 0, 0, 0, 0, 0 ],
[ 1, z, 1, 0, 0, 0, 0, 0 ],
[ 1, 1, z, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, z^2, 1, 1, 0 ],
[ 0, 0, 0, 0, 1, z^2, 1, 0 ],
[ 0, 0, 0, 0, 1, 1, z^2, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 1 ] ],

[ [ 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 1, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 1 ],
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[ 0, 0, 0, 0, 0, 0, 1, 0 ] ],
[ [ 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 1, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 1 ],
[ 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, 0 ] ] ] * z^0;

# Verify that the elements stabilize the subspaces as demanded.
Assert(0, OnSubspacesByCanonicalBasis(u_space[1],p[1]) = u_space[1]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[2],p[1]) = u_space[2]);

Assert(0, OnSubspacesByCanonicalBasis(u_space[1],p[2]) = u_space[1]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[3],p[2]) = u_space[3]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[4],p[2]) = u_space[4]);

Assert(0, OnSubspacesByCanonicalBasis(u_space[1],p[3]) = u_space[1]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[4],p[3]) = u_space[4]);

Assert(0, OnSubspacesByCanonicalBasis(u_space[2],p[4]) = u_space[2]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[3],p[4]) = u_space[3]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[4],p[4]) = u_space[4]);

Assert(0, OnSubspacesByCanonicalBasis(u_space[3],p[5]) = u_space[3]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[4],p[5]) = u_space[4]);

Assert(0, OnSubspacesByCanonicalBasis(u_space[1],p[6]) = u_space[1]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[2],p[6]) = u_space[2]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[4],p[6]) = u_space[4]);

Assert(0, OnSubspacesByCanonicalBasis(u_space[1],p[7]) = u_space[1]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[2],p[7]) = u_space[2]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[3],p[7]) = u_space[3]);

# On request, verify that the elements, together with the flag stabilizer,
# really generate the maximal stabilizers.
Assert(0, ClosureGroup(flag_stab, [p[1],p[2],p[3]]) = u_stab[1]);
Assert(0, ClosureGroup(flag_stab, [p[1],p[4],p[6]]) = u_stab[2]);
Assert(0, ClosureGroup(flag_stab, [p[2],p[4],p[5],p[7]]) = u_stab[3]);
Assert(0, ClosureGroup(flag_stab, [p[3],p[6],p[5]]) = u_stab[4]);

##########################################
# Build and check the amalgam
##########################################
gens := Concatenation(flag_gens, p);;
Read("build_rels.gap");
Read("check_amalgam.gap");
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C.3. mylib.gap

This file contains various useful functions used repeatedly by the other code.

# $Id: mylib.gap,v 1.30 2005/08/03 17:34:10 maxhorn Exp $

#
# Apply the Frobenius automorphismus to a matrix.
#
FrobeniusToMatrix := function ( M, F )

local f, deg;
Assert(0, IsMatrix(M));
deg := DegreeOverPrimeField(F);
f := FrobeniusAutomorphism(F) ^ (deg/2);
return List(M, row -> OnTuples(row,f));

end;;

#
# Compute a flip-flop matrix as described in Section 1.2.
#
FlipFlobBilinearForm := function ( n, F )

local I;
I := IdentityMat(n/2, F);
return BlockMatrix([[1,2,I],[2,1,-I]],2,2);

end;;

#
# Compute the value of the first form used in the paper: (u,v).
# This is a direct implementation using a for loop; it’s
# simply much faster than the ’naive’ implementation using
# matrix/vector multiplications.
#
ProdA := function(u, v)

local n, i, sum;
n := Length(u)/2;
sum := 0;
for i in [1..n] do

sum := sum + u[i] * v[i+n];
sum := sum - u[i+n] * v[i];

od;
return sum;
#return Sum([1..n], i -> u[i] * v[i+n]) - Sum([1..n], i -> u[i+n] * v[i]);
#return u*B*v;

end;;

#
# Compute the value of the second form used in the paper: ((u,v)).
# This is a direct implementation using a for loop; it’s
# simply much faster than the ’naive’ implementation using
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# matrix/vector multiplications.
#
ProdB := function(u, v)

local n, i, sum;
n := Length(u);
sum := 0;
for i in [1..n] do

sum := sum + u[i] * v[i]^q;
od;
return sum;
#return Sum([1..Length(u)], i -> u[i] * v[i]^q);
#return u*List(v, x -> x^q);

end;;

#
# Auxillary function, used by ExtendMatrixGroup and in build_sp6_gens.gap.
# It takes a (2n)x(2n) matrix M, and ’enlarges it’ by inserting two
# additional rows/columns. The matrix
# / A B \
# \ C D /
# for off = 0 becomes
# / A B \
# | 1 |
# | C D |
# \ 1 /
# and for off = 1 becomes
# / 1 \
# | A B |
# | 1 |
# \ C D /
#
ExtendMatrix := function ( M, off )

local ExtM, n, k, i, j, xoff, yoff;
n := Length(M);
ExtM := IdentityMat(n+2, DefaultFieldOfMatrix(M));

k := (n - (n mod 2))/2;

xoff := off;
for i in [1..n] do

yoff := off;
for j in [1..n] do

ExtM[i+xoff][j+yoff] := M[i][j];
if j = k or (j = 2*k and j+yoff < n+1) then yoff := yoff + 1; fi;

od;
if i = k or (i = 2*k and i+xoff < n+1) then xoff := xoff + 1; fi;

od;
return ExtM;

end;;

44



#
# Extend a (2n)x(2n) matrix group to a new (2n+2)x(2n+2) matrix group,
# by extending all its generators (via ExtendMatrix).
#
ExtendMatrixGroup := function ( G )

local gens;
Assert(0, IsMatrixGroup(G));

gens := GeneratorsOfGroup(G);
gens := ShallowCopy(Concatenation(

List(gens, g -> ExtendMatrix(g,0)),
List(gens, g -> ExtendMatrix(g,1))));

Sort(gens);
return GroupWithGenerators(Unique(gens));

end;;

#
# We can efficiently compute a (lower bound on) the size of a matrix group G
# by finding a vector v with an orbit on which G acts (faithfully). The
# following method does just that. The caller is responsible for supplying
# a suitable vector v (the shorter the orbit, the faster the computations).
#
SizeViaOrbit := function (G, v)

local orbit, phi, size;

orbit := Orbit(G, v);;
orbit := ShallowCopy(orbit);; Sort(orbit);
phi := ActionHomomorphism(G, orbit);
size := Size(Image(phi));
return size;

end;;

#
# Find a finite presentation of the given group, by first converting it to a
# perumtation presentation on the orbit of the given vector v_orb.
#
GroupRelatorsViaOrbit := function( G, v_orb, FG, fg_subset, gens )

local orb, phi, H, psi, Fgens, Frels;

Print(" Computing orbit...\n");
orb := Orbit( G, v_orb );;
orb := ShallowCopy(orb);;
Sort(orb);
#
Print(" Computing permutation group ...\n");
phi := ActionHomomorphism( G, orb, "surjective" );;
H := Image( phi );;
#
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Print(" Verifying that perm group is isomorphic image of the stabilizer...\n");
Assert(0, IsSurjective(phi) and Size(H) = Size(G));
#
Print(" Determining finite presentation...\n");
psi := IsomorphismFpGroupByGenerators( H, GeneratorsOfGroup(H) );;
#
Fgens := FreeGeneratorsOfFpGroup(Image(psi));
Frels := RelatorsOfFpGroup(Image(psi));
Assert(0, ForAll( Frels, r->MappedWord( r, Fgens, gens{fg_subset} ) = gens[1]^0 ));
return List( Frels, r->MappedWord( r, Fgens, GeneratorsOfGroup(FG){fg_subset} ) );

end;;

#
# Check whether the given group is a (subgroup of) Sp(n,q), i.e. whether
# its generators fulfill all required properties.
#
AssertIsSPqSubgroup := function ( G )

local F, B, n, gens;
Assert(0, IsMatrixGroup(G));
F := DefaultFieldOfMatrixGroup(G);
n := DimensionOfMatrixGroup(G);
B := FlipFlobBilinearForm(n, F);
gens := GeneratorsOfGroup(G);
Assert(0, ForAll(gens, g -> g*B*TransposedMat(g) = B));
Assert(0, ForAll(gens, g -> FrobeniusToMatrix(g, F) = TransposedMat(g)^-1));

end;;

#
# Check whether the given group is of type Sp(n,q).
#
AssertIsSPq := function ( G )

local F, z, n, v, q;

# Verify that our ’candidate’ is a subgroup of a Sp(n,q).
AssertIsSPqSubgroup(G);

F := DefaultFieldOfMatrixGroup(G);
z := PrimitiveRoot(F);
n := DimensionOfMatrixGroup(G);
q := Characteristic(F)^(DegreeOverPrimeField(F) / 2);

# Now compute a lower bound for its size. If it matches the
# size of Sp(2*k,q), they are isomorphic.
v := List([1..n], x -> 0*z^0);
v[n/2] := z^0;
v[n] := First(F, g -> g^(q+1) = -1*z^0);
Assert(0, Size(Sp(n,q)) = SizeViaOrbit(G, v));

end;;
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#
# Determine GU(n,q), but with the correct sesquilinear form.
#
MyGU := function (n, q)

local F, G, A, I, T, z, i, a, b, m;

F := GF(q^2);
z := PrimitiveRoot(F);
G := GU(n,q);

# The form is irrelevant if n = 1.
if n = 1 then

return G;
fi;

A := InvariantSesquilinearForm(G).matrix;
I := IdentityMat(n, F);

# The sesqulinear form A which GAP uses by default for GU is not, as
# desired by us, the identity matrix. Hence we have to conjugate GU
# before using it. To this end we compute a matrix T for which
# TransposedMat(T) * A * FrobeniusToMatrix(T)) = I
# We then conjugate GU by that matrix.

# HACK: We (ab)use the fact that we know the precise structure of A.
# In theory, this could change in new versions of GAP, so we add a
# quick check.
Assert(0, A = Reversed(I));

# We now compute T, starting from a null matrix and filling in entries.
T := NullMat(n, n, F);

# Find a such that a^q + a = 1.
a := First(F, g -> g^q+g=z^0);

# Find b such that b^q * b = 1.
b := First(F, g -> g^(q+1) = -1*z^0);

# Compute n/2, rounded up.
m := (n + (n mod 2)) / 2;

for i in [1..m] do
T[i][i] := a;
T[n-i+1][i] := z^0;

od;
for i in [(m+1)..n] do

T[n-i+1][i] := a^q * b;
T[i][i] := -z^0 * b;

od;
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# Verify the transformation matrix T works as expected.
Assert(0, TransposedMat(T) * A * FrobeniusToMatrix(T, F) = I);
G := G^T;
Assert(0, ForAll(GeneratorsOfGroup(G), g -> TransposedMat(g) * FrobeniusToMatrix(g, F) = I));
return G;

end;;

#
# Compute our prefered matrix presentation of Sp(n,q).
#
MySp := function (n, q)

local F, z, d, spq, g, S, k;

Assert(0, IsEvenInt(n));

F := GF(q^2);
z := PrimitiveRoot(F);

if n = 0 then
return TrivialGroup();

fi;

spq := [];
d := First(F, g -> g^(q+1)+z^(q+1)=z^0);

spq[2] := GroupWithGenerators(
[ [ [ z^(q-1), 0*z ],

[ 0*z, z^(1-q) ] ],
[ [ d^q, z ],
[ -z^q, d ] ] ]);

if n = 2 then
return spq[2];

fi;

spq[4] := ExtendMatrixGroup(spq[2]);
for g in GeneratorsOfGroup(spq[2]) do

S := BlockMatrix([[1,1,g],[2,2,FrobeniusToMatrix(g, F)]],2,2);
spq[4] := ClosureGroupAddElm(spq[4], MatrixByBlockMatrix(S));

od;
if q = 2 then

spq[4] := ClosureGroupAddElm(spq[4],
[[1,1,0,1],
[1,1,1,0],
[0,1,1,1],
[1,0,1,1]] * z^0);

fi;
SetSize(spq[4], Size(Sp(4,q)));
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if n = 4 then
return spq[4];

fi;

for k in [3..n/2] do
spq[2*k] := ExtendMatrixGroup(spq[2*k-2]);
SetSize(spq[2*k], Size(Sp(2*k,q)));

od;

return spq[n];
end;;

#
# This function determines generators for the maximal stabilizer S_d
# in Sp(2*n,q), which is of the form Sp(2n-2d,q) x GU(d, q^2).
#
SubspaceStabGens := function (n, q, d)

local g, G, h, F, z, i, gens;

F := GF(q^2);
z := PrimitiveRoot(F);
gens := [];

# Determine generators for the symplectic part.
G := MySp(2*n-2*d, q);
for g in GeneratorsOfGroup(G) do

for i in [1..d] do
g := ExtendMatrix(g, 1);

od;
Add(gens, g);

od;

# Determine generators for the unitary part.
G := MyGU(d, q);
for g in GeneratorsOfGroup(G) do

h := BlockMatrix([[1,1,g],[2,2,FrobeniusToMatrix(g,F)]],2,2) * z^0;
for i in [1..n-d] do

h := ExtendMatrix(h, 0);
od;
Add(gens, MatrixByBlockMatrix(h));

od;

return gens;
end;;
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C.4. common.gap

# $Id: common.gap,v 1.39 2005/07/25 18:56:16 maxhorn Exp $

# Set VERIFY_CORRECTNESS to false to turn off some of the most
# expensive correctness checks in the source. All cheap checks
# will stay on. Turning it off can improve perfomance coniderably.
VERIFY_CORRECTNESS := true;

F := GF(q*q);
z := PrimitiveRoot(F);

##########################################
#
# Compute the elemnts of our maximal flag, as
# well as the sizes of their stabilizers.
#
u_space := [];
u_size := [];
for i in [1..n] do

u_space[i] := IdentityMat(2*n, F){[1..i]};
u_size[i] := Size(GU(i, q));
if n > i then

u_size[i] := u_size[i] * Size(Sp(2*(n-i), q));
fi;

od;

##########################################
#
# Compute the flag stabilizer (diagonal matrices).
#
flag_gens := [];
for i in [1..n] do

tmp := List( [1..2*n], j -> z^0 );
tmp[i] := z^(q-1);
tmp[i+n] := z^(1-q);
Add(flag_gens, DiagonalMat( tmp ));

od;
flag_stab := GroupWithGenerators(flag_gens);
Assert(0, Size(flag_stab) = (q+1)^n);
AssertIsSPqSubgroup(flag_stab);
for i in [1..n] do

Assert(0, ForAll(flag_gens, g -> OnSubspacesByCanonicalBasis(u_space[i],g) = u_space[i]));
od;

##########################################
#
# Find a value lambda such that lambda^(q+1) = -1 in F_{q^2}.
# This is later used to define vectors with relatively short
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# orbit, typically of the form (1,0,0,v,0,0) and (1,0,1,v,0,v).
#
lambda := First(F, g -> g^(q+1) = -1*z^0);

##########################################
#
# If requested, verify that MySp(n,q) returns
# the correct group.
#
if VERIFY_CORRECTNESS then

for k in [1..n] do
Print("Verifying Sp(", 2*k, ",q)...\n");
AssertIsSPq(MySp(2*k,q));

od;
fi;

##########################################
#
# Determine the stabilizers.
#
v_orb := List([1..2*n], x -> 0*z^0);
v_orb[1] := z^0;
v_orb[n] := z^0;
v_orb[n+1] := lambda;
v_orb[2*n] := lambda;

u_stab := [];
for i in [1..n] do

Print(" -> determining stabilizer ", i, "\n");
gens := SubspaceStabGens(n, q, i);
Assert(0, ForAll(gens, g -> OnSubspacesByCanonicalBasis(u_space[i],g) = u_space[i]));
u_stab[i] := GroupWithGenerators(gens);

if VERIFY_CORRECTNESS then
Assert(0, SizeViaOrbit(u_stab[i], v_orb) = u_size[i]);
AssertIsSPqSubgroup(u_stab[i]);

fi;
SetSize(u_stab[i], u_size[i]);

od;

C.5. build sp6 gens.gap

# $Id: build_sp6_gens.gap,v 1.7 2005/08/21 16:59:54 maxhorn Exp $

##########################################
#
# Determine elements u, v, w, which stabilize the
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# subspaces as follows:
# u - u_space[2], u_space[3]
# v - u_space[1], u_space[3]
# w - u_space[1], u_space[2]
#
# Moreover, we want that that they generate, together
# the generators of the flag stabilizer, the maximal
# stabilizers as follows:
#
# u, v -> stabilizer of u_space[3]
# u, w -> stabilizer of u_space[2]
# v, w -> stabilizer of u_space[1]
#
##########################################
Print("Determining suitable generators...\n");

# Hack: We rely on our knowledge about the generators of MySp(2,q).
# If that ever changes, we have to compute g differently.
g := MySp(2,q).2;
u := ExtendMatrix(BlockMatrix([[1,1,g],[2,2,FrobeniusToMatrix(g, F)]],2,2),0);
v := ExtendMatrix(BlockMatrix([[1,1,g],[2,2,FrobeniusToMatrix(g, F)]],2,2),1);
w := ExtendMatrix(ExtendMatrix(g,1),1);

# Verify that u,v,w stabilize the subspaces as demanded.
Assert(0, OnSubspacesByCanonicalBasis(u_space[2],u) = u_space[2]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[3],u) = u_space[3]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[1],v) = u_space[1]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[3],v) = u_space[3]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[1],w) = u_space[1]);
Assert(0, OnSubspacesByCanonicalBasis(u_space[2],w) = u_space[2]);

# On request, verify that u,v,w, together with the flag stabilizer,
# really generate the maximal stabilizers.
if VERIFY_CORRECTNESS then

tmp := ClosureGroup(flag_stab, [u,w]);
Assert(0, u_size[2] = SizeViaOrbit(tmp, v_orb));
AssertIsSPqSubgroup(tmp);

tmp := ClosureGroup(flag_stab, [u,v]);
Assert(0, u_size[3] = SizeViaOrbit(tmp, v_orb));
AssertIsSPqSubgroup(tmp);

tmp := ClosureGroup(flag_stab, [v,w]);
Assert(0, u_size[1] = SizeViaOrbit(tmp, v_orb));
AssertIsSPqSubgroup(tmp);

fi;

gens := Concatenation(flag_gens, [u,v,w]);;
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C.6. build rels.gap

# $Id: build_rels.gap,v 1.18 2005/08/21 16:59:54 maxhorn Exp $

Print("Constructing the amalgam...\n");

SetInfoLevel(InfoFpGroup, 3);

FG := FreeGroup(Length(gens));

# Select the generators for each stabilizer
stab_gens := [];
for i in [1..Size(u_space)] do

stab_gens[i] := [];
for j in [1..Size(gens)] do

if OnSubspacesByCanonicalBasis(u_space[i],gens[j] ) = u_space[i] then
Add(stab_gens[i], j);

fi;
od;

od;

u_rels := [];
rels := [];
stabs := List( stab_gens, t->Group( gens{t} ) );

# We now determine finite presentations for each stabilizer.
# To do this, we first find a permutation group isomorphic
# to that stabilizer, then use IsomorphismFpGroupByGenerators
# to get the finite presentation.
#
# Finally, we form the union of the relators of the stabilizers.
#
for i in [1..Length(stab_gens)] do

# Verify and set the size of the group.
# We assume here that v_orb has been set to a vector with short orbit!
Assert(0, SizeViaOrbit(stabs[i], v_orb) = u_size[i]);
SetSize(stabs[i], u_size[i]);
#
Print("Generating relators for ", stab_gens[i], "\n");
u_rels[i] := GroupRelatorsViaOrbit(stabs[i], v_orb, FG, stab_gens[i], gens);
Append(rels, u_rels[i]);

od;

rels := Set(rels);

Assert(0, ForAll( rels, r->MappedWord( r, GeneratorsOfGroup(FG), gens ) = gens[1]^0 ));
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C.7. check amalgam.gap

# $Id: check_amalgam.gap,v 1.4 2005/07/25 18:56:16 maxhorn Exp $

#
# The universal completion of the amalgam:
#
A := FG / rels;

#
# The point stabilizer insider the universal completion:
#
U := Subgroup(A, GeneratorsOfGroup(A){stab_gens[1]});

#
# We now determine the index of U in A, using ACE.
#
# To this end, we estimate the required amount of memory, as follows:
#
# ACE needs at least 2*n words of memory for every coset class, where n is
# the number of generators (one word for each generator, another for its
# inverse).
#
# We already know the number of expected coset classes; but of course, ACE
# usually will generate more intermediate coset classes than there
# actually are, so we have to increase this value by a certain "safety
# margin" to arrive at the final estimate.
#

# The expected index = expected number of coset classes.
target_index := Size(Sp(2*n,q)) / u_size[1];
expected_mem := target_index * (2*Size(GeneratorsOfGroup(FG))+1);

# Load ACE.
LoadPackage( "ace" );
SetInfoACELevel( 2 );
TCENUM := ACETCENUM;

# Perform the enumeration. We empirically determined that the
# felsch-0 strategy works best for our purposes.
real_index := Index(A, U : max := 0, workspace := expected_mem, messages := 10000, felsch:=0);

# Check whether the computed index matches our expectations or not.
Print("Sp(",2*n,",",q,")");
if real_index = target_index then

Print(" is universal completion of our amalgam!\n");
else

Print(" is NOT the universal completion of our amalgam!\n");
fi;
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D. GAP code: combinatorics with triangles

The following code was used to check all interesting triangle conjugacy classes, as de-
scribed in the proof of Lemma 5.3.3. It uses mylib.gap, see Section C.3.

# $Id: fast_tri2.gap,v 1.12 2005/08/04 17:06:31 maxhorn Exp $

Read("mylib.gap");

# Specify the prime power q, we’ll consider the groups Sp(6, q^2).
# Works for any prime power q>=4.
q := 11;

#
# Various useful bits and pieces
#
F := GF(q*q);
z := PrimitiveRoot(F);

NormB := function(u)
return ProdB(u,u);

end;;

# The set of all values k which fullfil k * k^q = -1
k_set := Set(Filtered(F, g -> g^(q+1) = -1*z^0));

# The set of units in F_{q^2}
FStar := Filtered(F, g -> g <> 0*z^0);

# Computer the outer product of ’space’ with itself using the two-argument
# function ’func’. We use this to compute the gram matrices of a given
# vector span.
Outer := function (space, func)

local mat, n, x, y;
n := Length(space);
mat := NullMat(n, n);
for x in [1..n] do

for y in [1..n] do
mat[x][y] := func(space[x], space[y]);

od;
od;
return mat;

end;;
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# Determine whether the vectors in ’space’ span a geometric subspace.
# Condition for that is that the subspace is non-degenerate w.r.t. the
# first form (ProdA) and totally degenerate w.r.t. the second form (ProdB).
IsGeometric := function (space)

local n;
n := Length(space);
if n <> RankMat(space) then

return false;
fi;
if (n > 1) and (Outer(space, ProdA) <> NullMat(n, n, F)) then

return false;
fi;
return 0*z^0 <> Determinant(Outer(space, ProdB));

end;;

# We consider triangles of this form:
# p1 = <e1>, p2 = <e2>, p3 = <x*e1 + y*e2 + k*e3 + f3>
# where k^(q+1) = -1, x and y are non-zero, and x^(q+1) + y^(q+1) <> 0.
# Thanks to Lemma 3.3.2, we can limit ourselves to the case x=1.
#
# We search for triples of points a,b,c with the property that each of them
# is geometric, the lines connecting them are geometric, and the triangle
# <a,b,c> is geometric as well.
#
# Whenever we find such a triple, we check whether the octahedron we get by
# combining <p1,p2,p3> and <a,b,c> in a certain way (see InducesGoodOctahedron
# and proposition 3.3.3) is decomposable.
#
# Whenever we find such a triangle, we have thus shown that the original
# bad triangle <p1,p2,p3> is null homotopic (and hence not that bad after all).
#
InducesGoodOctahedron := function (xBad, yBad, k, a, b, c)

local p1, p2, p3;
p1 := [1, 0, 0, 0, 0, 0] * z^0;
p2 := [0, 1, 0, 0, 0, 0] * z^0;
p3 := [xBad, yBad, k, 0, 0, 1] * z^0;
return IsGeometric([a, b, c])

and IsGeometric([a])
and IsGeometric([b])
and IsGeometric([c])
and IsGeometric([a, b])
and IsGeometric([a, c])
and IsGeometric([b, c])
#
and IsGeometric([a, p1])
and IsGeometric([a, p2])
and IsGeometric([b, p2])
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and IsGeometric([b, p3])
and IsGeometric([c, p1])
and IsGeometric([c, p3])
#
and IsGeometric([a, b, p2])
and IsGeometric([a, p1, p2])
and IsGeometric([b, p2, p3])
and IsGeometric([a, c, p1])
and IsGeometric([b, c, p3])
and IsGeometric([c, p1, p3]);

end;;

#
# Iterate over certain special points <a>, <b>, <c>; we check whether
# they form a triangle; if they do, we then check whether the cylinder
# formed by it, and thus our starting triangle, is null homotopic.
# If so, we return true.
#
IsDecomposable := function (xBad, yBad, k)

local a, b, c, b1, c2, nA, nB, nAB, p1, p2, p3;
a := [0, 0, 0, 0, 0, 1] * z^0;
b := [1, 0, 0, k, 0, -xBad] * z^0;
c := [0, 1, 0, 0, k, -yBad] * z^0;
p1 := [1, 0, 0, 0, 0, 0] * z^0;
p2 := [0, 1, 0, 0, 0, 0] * z^0;
p3 := [xBad, yBad, k, 0, 0, 1] * z^0;
nA := NormB(a);
for b1 in FStar do

b[1] := b1;
nB := NormB(b);
nAB := ProdB(a,b);
# Perform a precheck to see whether this value of b will lead
# to a suitable octahedron. If we encounter already here any
# non-geometric components, we can short circuit the search
# and immediately proceed to the next possible value for b.
if nB <> 0*z^0 and nA*nB <> nAB^(q+1) and IsGeometric([b, p2])
and IsGeometric([b, p3]) and IsGeometric([b, p2, p3])
and IsGeometric([a, b, p2]) then
for c2 in FStar do

c[2] := c2;
if InducesGoodOctahedron(xBad, yBad, k, a, b, c) then

return true;
fi;

od;
fi;

od;
return false;

end;;
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# Finally, we iterate over all normalized (i.e. x = 1) bad triangles
# and invoke IsDecomposable for each of them, to test whether
# the triangle we are looking at is null homotopic.
cGood:=0;
cBad:=0;
xBad := z^0;
for yBad in FStar do

if xBad^(q+1) + yBad^(q+1) <> 0*z^0 then
for k in k_set do

if IsDecomposable(xBad, yBad, k) then
cGood := cGood + 1;

else
cBad := cBad + 1;

fi;
if (cGood+cBad) mod 10 = 0 then

Print("Bad: ", cBad, ", good: ", cGood, "\n");
fi;

od;
fi;

od;
Print("There are ",cGood+cBad," conjugacy classes of bad triangles.\n");
Print("We were able to decompose ",cGood," triangles and failed for ",cBad,"\n");
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